Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (34)
  • Open Access


    Slow Viscous Migration of a Conducting Solid Particle under the Action of Uniform Ambient Electric and Magnetic Fields

    A. Sellier1

    CMES-Computer Modeling in Engineering & Sciences, Vol.21, No.2, pp. 105-132, 2007, DOI:10.3970/cmes.2007.021.105

    Abstract We examine the low-Reynolds-number migration of a conducting and arbitrarily-shaped solid particle freely immersed in a metal liquid of different conductivity when subject to uniform ambient electric and magnetic fields. The boundary formulation established elsewhere for an insulating particle is extended and the incurred particle's rigid-body motion is then obtained by determinating a very few surface quantities on the particle's surface. The behavior of either oblate or prolate conducting spheroids is analytically investigated and the poposed procedure for the challenging case of other non-trivial geometries is implemented and benchmarked against those solutions. The numerical implementation makes it possible to obtain… More >

  • Open Access


    Magnetohydrodynamic Flow and Heat Transfer of an Upper-Convected Maxwell Fluid Due to a Stretching Sheet

    R. C. Bataller1

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.2, pp. 153-174, 2011, DOI:10.3970/fdmp.2011.007.153

    Abstract We present a numerical study of the flow and heat transfer of an incompressible upper-convected Maxwell (UCM) fluid in the presence of an uniform transverse magnetic field over a porous stretching sheet taking into account suction at the surface as well as viscous dissipation and thermal radiation effects. Selected similarity analyses have been carried out by means of a numerical implementation. The effects on the velocity and temperature fields over the sheet of the parameters like elasticity number, suction velocity, magnetic parameter, radiation parameter, Prandtl number and Eckert number are also analyzed. More >

  • Open Access


    Magnetohydrodynamics Stability of Natural Convection During Phase Change of Molten Gallium in a Three-Dimensional Enclosure

    S. Bouabdallah1,2, R. Bessaïh1

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.3, pp. 251-276, 2010, DOI:10.3970/fdmp.2010.006.251

    Abstract In this paper, a numerical study of magnetohydrodynamics stability during phase change of a pure metal (liquid Gallium) in a cubical enclosure is presented. An external magnetic field is applied in X-, Y-, and Z-directions separately. Two electric potential boundary conditions are considered: electrically conducting and insulating walls. The finite-volume method with enthalpy formulation is used to solve the mathematical model in the solid and liquid phases. The Grashof number is fixed at Gr =105and the Hartmann number is varied from Ha= 0 to 200. The effect of magnetic field on the flow field and heat transfer, and on the… More >

  • Open Access


    CFD Simulation of Magnetohydrodynamic Flow of a Liquid- Metal Galinstan Fluid in Circular Pipes

    E. Gedik1, H.Kurt2, Z.Recebli1

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.1, pp. 23-33, 2013, DOI:10.3970/fdmp.2013.009.023

    Abstract In this paper, the steady, laminar, incompressible viscous flow of an electrically conducting liquid-metal fluid is investigated numerically in a circular non-conducting pipe. The considered work fluid is Galinstan (GaInSn, i.e. Gallium-Indium-Tin). Such a liquid metal is subjected to a constant pressure gradient along the axial direction and a uniform transverse magnetic field in the spanwise direction. Numerical simulations are performed by means of the Fluent commercial software (used to solve the governing three dimensional fluid dynamics and electromagnetic field partial differential equations iteratively). The magnetic field induction, B, takes values between 0 and 1.5 T with a 0.5 T… More >

Displaying 31-40 on page 4 of 34. Per Page