Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (42)
  • Open Access

    ARTICLE

    Optimal Bottleneck-Driven Deep Belief Network Enabled Malware Classification on IoT-Cloud Environment

    Mohammed Maray1, Hamed Alqahtani2, Saud S. Alotaibi3, Fatma S. Alrayes4, Nuha Alshuqayran5, Mrim M. Alnfiai6, Amal S. Mehanna7, Mesfer Al Duhayyim8,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3101-3115, 2023, DOI:10.32604/cmc.2023.032969 - 31 October 2022

    Abstract Cloud Computing (CC) is the most promising and advanced technology to store data and offer online services in an effective manner. When such fast evolving technologies are used in the protection of computer-based systems from cyberattacks, it brings several advantages compared to conventional data protection methods. Some of the computer-based systems that effectively protect the data include Cyber-Physical Systems (CPS), Internet of Things (IoT), mobile devices, desktop and laptop computer, and critical systems. Malicious software (malware) is nothing but a type of software that targets the computer-based systems so as to launch cyber-attacks and threaten… More >

  • Open Access

    ARTICLE

    Android Malware Detection Using ResNet-50 Stacking

    Lojain Nahhas1, Marwan Albahar1,*, Abdullah Alammari2, Anca Jurcut3

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3997-4014, 2023, DOI:10.32604/cmc.2023.028316 - 31 October 2022

    Abstract There has been an increase in attacks on mobile devices, such as smartphones and tablets, due to their growing popularity. Mobile malware is one of the most dangerous threats, causing both security breaches and financial losses. Mobile malware is likely to continue to evolve and proliferate to carry out a variety of cybercrimes on mobile devices. Mobile malware specifically targets Android operating system as it has grown in popularity. The rapid proliferation of Android malware apps poses a significant security risk to users, making static and manual analysis of malicious files difficult. Therefore, efficient identification… More >

  • Open Access

    ARTICLE

    Impact of Portable Executable Header Features on Malware Detection Accuracy

    Hasan H. Al-Khshali1,*, Muhammad Ilyas2

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 153-178, 2023, DOI:10.32604/cmc.2023.032182 - 22 September 2022

    Abstract One aspect of cybersecurity, incorporates the study of Portable Executables (PE) files maleficence. Artificial Intelligence (AI) can be employed in such studies, since AI has the ability to discriminate benign from malicious files. In this study, an exclusive set of 29 features was collected from trusted implementations, this set was used as a baseline to analyze the presented work in this research. A Decision Tree (DT) and Neural Network Multi-Layer Perceptron (NN-MLPC) algorithms were utilized during this work. Both algorithms were chosen after testing a few diverse procedures. This work implements a method of subgrouping… More >

  • Open Access

    ARTICLE

    Optimal Deep Belief Network Enabled Malware Detection and Classification Model

    P. Pandi Chandran1,*, N. Hema Rajini2, M. Jeyakarthic3

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3349-3364, 2023, DOI:10.32604/iasc.2023.029946 - 17 August 2022

    Abstract Cybercrime has increased considerably in recent times by creating new methods of stealing, changing, and destroying data in daily lives. Portable Document Format (PDF) has been traditionally utilized as a popular way of spreading malware. The recent advances of machine learning (ML) and deep learning (DL) models are utilized to detect and classify malware. With this motivation, this study focuses on the design of mayfly optimization with a deep belief network for PDF malware detection and classification (MFODBN-MDC) technique. The major intention of the MFODBN-MDC technique is for identifying and classifying the presence of malware… More >

  • Open Access

    ARTICLE

    Optimal Unification of Static and Dynamic Features for Smartphone Security Analysis

    Sumit Kumar1,*, S. Indu2, Gurjit Singh Walia1

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 1035-1051, 2023, DOI:10.32604/iasc.2023.024469 - 06 June 2022

    Abstract Android Smartphones are proliferating extensively in the digital world due to their widespread applications in a myriad of fields. The increased popularity of the android platform entices malware developers to design malicious apps to achieve their malevolent intents. Also, static analysis approaches fail to detect run-time behaviors of malicious apps. To address these issues, an optimal unification of static and dynamic features for smartphone security analysis is proposed. The proposed solution exploits both static and dynamic features for generating a highly distinct unified feature vector using graph based cross-diffusion strategy. Further, a unified feature is More >

  • Open Access

    ARTICLE

    A Survey on Visualization-Based Malware Detection

    Ahmad Moawad*, Ahmed Ismail Ebada, Aya M. Al-Zoghby

    Journal of Cyber Security, Vol.4, No.3, pp. 169-184, 2022, DOI:10.32604/jcs.2022.033537 - 01 February 2023

    Abstract In computer security, the number of malware threats is increasing and causing damage to systems for individuals or organizations, necessitating a new detection technique capable of detecting a new variant of malware more efficiently than traditional anti-malware methods. Traditional anti-malware software cannot detect new malware variants, and conventional techniques such as static analysis, dynamic analysis, and hybrid analysis are time-consuming and rely on domain experts. Visualization-based malware detection has recently gained popularity due to its accuracy, independence from domain experts, and faster detection time. Visualization-based malware detection uses the image representation of the malware binary More >

  • Open Access

    ARTICLE

    An Adaptive-Feature Centric XGBoost Ensemble Classifier Model for Improved Malware Detection and Classification

    J. Pavithra*, S. Selvakumarasamy

    Journal of Cyber Security, Vol.4, No.3, pp. 135-151, 2022, DOI:10.32604/jcs.2022.031889 - 01 February 2023

    Abstract Machine learning (ML) is often used to solve the problem of malware detection and classification, and various machine learning approaches are adapted to the problem of malware classification; still acquiring poor performance by the way of feature selection, and classification. To address the problem, an efficient novel algorithm for adaptive feature-centered XG Boost Ensemble Learner Classifier “AFC-XG Boost” is presented in this paper. The proposed model has been designed to handle varying data sets of malware detection obtained from Kaggle data set. The model turns the XG Boost classifier in several stages to optimize performance.… More >

  • Open Access

    ARTICLE

    Swarm Optimization and Machine Learning for Android Malware Detection

    K. Santosh Jhansi1,2,*, P. Ravi Kiran Varma2, Sujata Chakravarty3

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6327-6345, 2022, DOI:10.32604/cmc.2022.030878 - 28 July 2022

    Abstract Malware Security Intelligence constitutes the analysis of applications and their associated metadata for possible security threats. Application Programming Interfaces (API) calls contain valuable information that can help with malware identification. The malware analysis with reduced feature space helps for the efficient identification of malware. The goal of this research is to find the most informative features of API calls to improve the android malware detection accuracy. Three swarm optimization methods, viz., Ant Lion Optimization (ALO), Cuckoo Search Optimization (CSO), and Firefly Optimization (FO) are applied to API calls using auto-encoders for identification of most influential More >

  • Open Access

    ARTICLE

    Crypto Hash Based Malware Detection in IoMT Framework

    R Punithavathi1, K Venkatachalam2, Mehedi Masud3, Mohammed A. AlZain4, Mohamed Abouhawwash5,6,*

    Intelligent Automation & Soft Computing, Vol.34, No.1, pp. 559-574, 2022, DOI:10.32604/iasc.2022.024715 - 15 April 2022

    Abstract The challenges in providing e-health services with the help of Internet of Medical Things (IoMT) is done by connecting to the smart medical devices. Through IoMT sensor devices/smart devices, physicians share the sensitive information of the patient. However, protecting the patient health care details from malware attack is necessary in this advanced digital scenario. Therefore, it is needed to implement cryptographic algorithm to enhance security, safety, reliability, preventing details from malware attacks and privacy of medical data. Nowadays blockchain has become a prominent technology for storing medical data securely and transmit through IoMT concept. The… More >

  • Open Access

    ARTICLE

    Malware Detection Using Decision Tree Based SVM Classifier for IoT

    Anwer Mustafa Hilal1,*, Siwar Ben Haj Hassine2, Souad Larabi-Marie-Sainte3, Nadhem Nemri2, Mohamed K. Nour4, Abdelwahed Motwakel1, Abu Sarwar Zamani1, Mesfer Al Duhayyim5

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 713-726, 2022, DOI:10.32604/cmc.2022.024501 - 24 February 2022

    Abstract The development in Information and Communication Technology has led to the evolution of new computing and communication environment. Technological revolution with Internet of Things (IoTs) has developed various applications in almost all domains from health care, education to entertainment with sensors and smart devices. One of the subsets of IoT is Internet of Medical things (IoMT) which connects medical devices, hardware and software applications through internet. IoMT enables secure wireless communication over the Internet to allow efficient analysis of medical data. With these smart advancements and exploitation of smart IoT devices in health care technology… More >

Displaying 21-30 on page 3 of 42. Per Page