Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (48)
  • Open Access

    ARTICLE

    Enhancing Malware Detection Resilience: A U-Net GAN Denoising Framework for Image-Based Classification

    Huiyao Dong1, Igor Kotenko2,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4263-4285, 2025, DOI:10.32604/cmc.2025.062439 - 06 March 2025

    Abstract The growing complexity of cyber threats requires innovative machine learning techniques, and image-based malware classification opens up new possibilities. Meanwhile, existing research has largely overlooked the impact of noise and obfuscation techniques commonly employed by malware authors to evade detection, and there is a critical gap in using noise simulation as a means of replicating real-world malware obfuscation techniques and adopting denoising framework to counteract these challenges. This study introduces an image denoising technique based on a U-Net combined with a GAN framework to address noise interference and obfuscation challenges in image-based malware analysis. The… More >

  • Open Access

    ARTICLE

    GENOME: Genetic Encoding for Novel Optimization of Malware Detection and Classification in Edge Computing

    Sang-Hoon Choi1, Ki-Woong Park2,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4021-4039, 2025, DOI:10.32604/cmc.2025.061267 - 06 March 2025

    Abstract The proliferation of Internet of Things (IoT) devices has established edge computing as a critical paradigm for real-time data analysis and low-latency processing. Nevertheless, the distributed nature of edge computing presents substantial security challenges, rendering it a prominent target for sophisticated malware attacks. Existing signature-based and behavior-based detection methods are ineffective against the swiftly evolving nature of malware threats and are constrained by the availability of resources. This paper suggests the Genetic Encoding for Novel Optimization of Malware Evaluation (GENOME) framework, a novel solution that is intended to improve the performance of malware detection and… More >

  • Open Access

    ARTICLE

    Deep Convolution Neural Networks for Image-Based Android Malware Classification

    Amel Ksibi1,*, Mohammed Zakariah2, Latifah Almuqren1, Ala Saleh Alluhaidan1

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4093-4116, 2025, DOI:10.32604/cmc.2025.059615 - 06 March 2025

    Abstract The analysis of Android malware shows that this threat is constantly increasing and is a real threat to mobile devices since traditional approaches, such as signature-based detection, are no longer effective due to the continuously advancing level of sophistication. To resolve this problem, efficient and flexible malware detection tools are needed. This work examines the possibility of employing deep CNNs to detect Android malware by transforming network traffic into image data representations. Moreover, the dataset used in this study is the CIC-AndMal2017, which contains 20,000 instances of network traffic across five distinct malware categories: a.… More >

  • Open Access

    ARTICLE

    Reverse Analysis Method and Process for Improving Malware Detection Based on XAI Model

    Ki-Pyoung Ma1, Dong-Ju Ryu2, Sang-Joon Lee3,*

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4485-4502, 2024, DOI:10.32604/cmc.2024.059116 - 19 December 2024

    Abstract With the advancements in artificial intelligence (AI) technology, attackers are increasingly using sophisticated techniques, including ChatGPT. Endpoint Detection & Response (EDR) is a system that detects and responds to strange activities or security threats occurring on computers or endpoint devices within an organization. Unlike traditional antivirus software, EDR is more about responding to a threat after it has already occurred than blocking it. This study aims to overcome challenges in security control, such as increased log size, emerging security threats, and technical demands faced by control staff. Previous studies have focused on AI detection models,… More >

  • Open Access

    ARTICLE

    A Novel Approach for Android Malware Detection Based on Intelligent Computing

    Manh Vu Minh*, Cho Do Xuan

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4371-4396, 2024, DOI:10.32604/cmc.2024.058168 - 19 December 2024

    Abstract Detecting malware on mobile devices using the Android operating system has become a critical challenge in the field of cybersecurity, in the context of the rapid increase in the number of malware variants and the frequency of attacks targeting Android devices. In this paper, we propose a novel intelligent computational method to enhance the effectiveness of Android malware detection models. The proposed method combines two main techniques: (1) constructing a malware behavior profile and (2) extracting features from the malware behavior profile using graph neural networks. Specifically, to effectively construct an Android malware behavior profile,… More >

  • Open Access

    ARTICLE

    Backdoor Malware Detection in Industrial IoT Using Machine Learning

    Maryam Mahsal Khan1, Attaullah Buriro2, Tahir Ahmad3,*, Subhan Ullah4

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4691-4705, 2024, DOI:10.32604/cmc.2024.057648 - 19 December 2024

    Abstract With the ever-increasing continuous adoption of Industrial Internet of Things (IoT) technologies, security concerns have grown exponentially, especially regarding securing critical infrastructures. This is primarily due to the potential for backdoors to provide unauthorized access, disrupt operations, and compromise sensitive data. Backdoors pose a significant threat to the integrity and security of Industrial IoT setups by exploiting vulnerabilities and bypassing standard authentication processes. Hence its detection becomes of paramount importance. This paper not only investigates the capabilities of Machine Learning (ML) models in identifying backdoor malware but also evaluates the impact of balancing the dataset More >

  • Open Access

    ARTICLE

    Privacy Preservation in IoT Devices by Detecting Obfuscated Malware Using Wide Residual Network

    Deema Alsekait1, Mohammed Zakariah2, Syed Umar Amin3,*, Zafar Iqbal Khan3, Jehad Saad Alqurni4

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2395-2436, 2024, DOI:10.32604/cmc.2024.055469 - 18 November 2024

    Abstract The widespread adoption of Internet of Things (IoT) devices has resulted in notable progress in different fields, improving operational effectiveness while also raising concerns about privacy due to their vulnerability to virus attacks. Further, the study suggests using an advanced approach that utilizes machine learning, specifically the Wide Residual Network (WRN), to identify hidden malware in IoT systems. The research intends to improve privacy protection by accurately identifying malicious software that undermines the security of IoT devices, using the MalMemAnalysis dataset. Moreover, thorough experimentation provides evidence for the effectiveness of the WRN-based strategy, resulting in… More >

  • Open Access

    ARTICLE

    Multi-Binary Classifiers Using Optimal Feature Selection for Memory-Saving Intrusion Detection Systems

    Ye-Seul Kil1,#, Yu-Ran Jeon1,#, Sun-Jin Lee1, Il-Gu Lee1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1473-1493, 2024, DOI:10.32604/cmes.2024.052637 - 27 September 2024

    Abstract With the rise of remote work and the digital industry, advanced cyberattacks have become more diverse and complex in terms of attack types and characteristics, rendering them difficult to detect with conventional intrusion detection methods. Signature-based intrusion detection methods can be used to detect attacks; however, they cannot detect new malware. Endpoint detection and response (EDR) tools are attracting attention as a means of detecting attacks on endpoints in real-time to overcome the limitations of signature-based intrusion detection techniques. However, EDR tools are restricted by the continuous generation of unnecessary logs, resulting in poor detection… More >

  • Open Access

    ARTICLE

    Modern Mobile Malware Detection Framework Using Machine Learning and Random Forest Algorithm

    Mohammad Ababneh*, Ayat Al-Droos, Ammar El-Hassan

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1171-1191, 2024, DOI:10.32604/csse.2024.052875 - 13 September 2024

    Abstract With the high level of proliferation of connected mobile devices, the risk of intrusion becomes higher. Artificial Intelligence (AI) and Machine Learning (ML) algorithms started to feature in protection software and showed effective results. These algorithms are nonetheless hindered by the lack of rich datasets and compounded by the appearance of new categories of malware such that the race between attackers’ malware, especially with the assistance of Artificial Intelligence tools and protection solutions makes these systems and frameworks lose effectiveness quickly. In this article, we present a framework for mobile malware detection based on a… More >

  • Open Access

    ARTICLE

    A Low Complexity ML-Based Methods for Malware Classification

    Mahmoud E. Farfoura1,*, Ahmad Alkhatib1, Deema Mohammed Alsekait2,*, Mohammad Alshinwan3,7, Sahar A. El-Rahman4, Didi Rosiyadi5, Diaa Salama AbdElminaam6,7

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4833-4857, 2024, DOI:10.32604/cmc.2024.054849 - 12 September 2024

    Abstract The article describes a new method for malware classification, based on a Machine Learning (ML) model architecture specifically designed for malware detection, enabling real-time and accurate malware identification. Using an innovative feature dimensionality reduction technique called the Interpolation-based Feature Dimensionality Reduction Technique (IFDRT), the authors have significantly reduced the feature space while retaining critical information necessary for malware classification. This technique optimizes the model’s performance and reduces computational requirements. The proposed method is demonstrated by applying it to the BODMAS malware dataset, which contains 57,293 malware samples and 77,142 benign samples, each with a 2381-feature… More >

Displaying 1-10 on page 1 of 48. Per Page