Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (701)
  • Open Access

    ARTICLE

    Cusp-Catastrophe Interpretation of the Stick-Slip Behaviour of Rough Surfaces

    A. Carpinteri1, M. Paggi1,2, G. Zavarise3

    CMES-Computer Modeling in Engineering & Sciences, Vol.53, No.3, pp. 303-326, 2009, DOI:10.3970/cmes.2009.053.303

    Abstract The stick-slip instability is a typical manifestation of the nonlinearity of the frictional response of rough surfaces. As recently demonstrated by several researchers, the problem of contact loss is also inherently connected to the stick-slip instability and it has been detected both in elastically soft materials, such as rubber or gelatine, and in elastic stiff materials, such as for earthquake faults. Treating the problem of tangential contact in the framework of micromechanical contact models, the effect of the phenomenon of contact loss on the micro-slip behavior of rough surfaces is herein investigated. To this aim,… More >

  • Open Access

    ARTICLE

    A Unified Approach to Numerical Modeling of Fully and Partially Saturated Porous Materials by Considering Air Dissolved in Water

    D. Gawin1, L. Sanavia2

    CMES-Computer Modeling in Engineering & Sciences, Vol.53, No.3, pp. 255-302, 2009, DOI:10.3970/cmes.2009.053.255

    Abstract This paper presents a unified mathematical approach to model the hydro-thermo-mechanical behavior of saturated and partially saturated porous media by considering the effects of air dissolved in liquid water. The model equations are discretized by means of the Finite Element method. A correspondingly updated code is used to analyze two examples; the first one is the well known Liakopoulos test, i.e. the drainage of liquid water from a 1m column of sand, which is used to validate numerically the model here developed. As second example, a biaxial compression test of undrained dense sands where cavitation More >

  • Open Access

    ARTICLE

    A new modelling approach based on Binary Model and X-FEM to investigate the mechanical behaviour of textile reinforced composites

    G. Haasemann1, M. Kästner2, V. Ulbricht3

    CMES-Computer Modeling in Engineering & Sciences, Vol.42, No.1, pp. 35-58, 2009, DOI:10.3970/cmes.2009.042.035

    Abstract The purpose of this paper is the presentation of a new efficient modelling strategy based on the combination of Binary Model and Extended Finite Element Method (X-FEM). It is applied to represent the internal architecture of textile reinforced composites where the resin-saturated fabric is characterised by a complex geometry. Homogenisation methods are used to compute the effective elastic material properties. Thereby, the discrete formulation of periodic boundary conditions is adapted regarding additional degrees of freedom used by finite elements which are based on the X-FEM. Finally, the results in terms of effective material properties reveal More >

  • Open Access

    ARTICLE

    Micromechanical analysis of aligned and randomly oriented whisker-/ short fiber-reinforced composites

    S.H. Pyo1, H.K. Lee1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.40, No.3, pp. 271-306, 2009, DOI:10.3970/cmes.2009.040.271

    Abstract This paper presents a micromechanical approach for predicting the elastic and multi-level damage response of aligned and randomly oriented whisker-/ short fiber-reinforced composites. Based on a combination of Eshelby's micromechanics and the evolutionary imperfect interface approach, the effective elastic moduli of the composites are derived explicitly. The modified Eshelby's tensor for spheroidal inclusions with slightly weakened interface [Qu (1993b)] is extended in the present study to model whiskers or short fibers having mild or severe imperfect interfaces. Aligned and random orientations of spheroidal reinforcements are considered. A multi-level damage model in accordance with the Weibull's More >

  • Open Access

    ARTICLE

    Estimation of thermo-elasto-plastic properties of thin-film mechanical properties using MD nanoindentation simulations and an inverse FEM/ANN computational scheme

    D. S. Liu1, C.Y. Tsai1

    CMES-Computer Modeling in Engineering & Sciences, Vol.39, No.1, pp. 29-48, 2009, DOI:10.3970/cmes.2009.039.029

    Abstract Utilizing a thin copper substrate for illustration purposes, this study presents a novel numerical method for extracting the thermo-mechanical properties of a thin-film. In the proposed approach, molecular dynamics (MD) simulations are performed to establish the load-displacement response of a thin copper substrate nanoindented at temperatures ranging from 300~1400 K. The load data are then input to an artificial neural network (ANN), trained using a finite element model (FEM), in order to extract the material constants of the copper substrate. The material constants are then used to construct the corresponding stress-strain curve, from which the… More >

  • Open Access

    ARTICLE

    A Discrete Fourier Transform Framework for Localization Relations

    D.T. Fullwood1, S.R. Kalidindi2, B.L. Adams1, S. Ahmadi1

    CMC-Computers, Materials & Continua, Vol.9, No.1, pp. 25-40, 2009, DOI:10.3970/cmc.2009.009.025

    Abstract Localization relations arise naturally in the formulation of multi-scale models. They facilitate statistical analysis of local phenomena that may contribute to failure related properties. The computational burden of dealing with such relations is high and recent work has focused on spectral methods to provide more efficient models. Issues with the inherent integrations in the framework have led to a tendency towards calibration-based approaches. In this paper a discrete Fourier transform framework is introduced, leading to an extremely efficient basis for the localization relations. Previous issues with the Green's function integrals are resolved, and the method More >

  • Open Access

    ARTICLE

    A Phenomenological Theory and Numerical Procedure for Chemo-Mechanical Coupling Behavior of Hydrogel

    Q. S. Yang1, B. S. Liu, L. T. Meng

    CMC-Computers, Materials & Continua, Vol.12, No.1, pp. 39-56, 2009, DOI:10.3970/cmc.2009.012.039

    Abstract Coupling and interaction of multi-physical fields exist in hydrogel consisting of a fluid and a solid under external stimulus. In this paper, a phenomenological theory for chemo-mechanical coupling behavior and finite element formulation are developed, based on the thermodynamic laws. The free energy function is constructed and used to derive the constitutive equations and governing equations for a linear coupling system including a chemical effect. Equivalent integral forms of the governing equations and coupled finite element equations are obtained by a variational principle. Numerical examples demonstrate the interaction of chemical and mechanical effects of hydrogel More >

  • Open Access

    ARTICLE

    Determination of Temperature-Dependent Elasto-Plastic Properties of Thin-Film by MD Nanoindentation Simulations and an Inverse GA/FEM Computational Scheme

    D. S. Liu1, C. Y. Tsai1, S. R. Lyu2

    CMC-Computers, Materials & Continua, Vol.11, No.2, pp. 147-164, 2009, DOI:10.3970/cmc.2009.011.147

    Abstract This study presents a novel numerical method for extracting the tempe -rature-dependent mechanical properties of the gold and aluminum thin-films. In the proposed approach, molecular dynamics (MD) simulations are performed to establish the load-displacement response of the thin substrate nanoindented at temperatures ranging from 300-900 K. A simple but effective procedure involving genetic algorithm (GA) and finite element method (FEM) is implemented to extract the material constants of the gold and aluminum substrates. The material constants are then used to construct the corresponding stress-strain curve, from which the elastic modulus, yield stress and the tangent More >

  • Open Access

    ARTICLE

    The Influence of Structural Defect on Mechanical Properties and Fracture Behaviors of Carbon Nanotubes

    Hsien-Chie Cheng1, Yu-Chen Hsu2, Wen-Hwa Chen2

    CMC-Computers, Materials & Continua, Vol.11, No.2, pp. 127-146, 2009, DOI:10.3970/cmc.2009.011.127

    Abstract Due to the limitation of fabrication technologies nowadays, structural or atomistic defects are often perceived in carbon nanotubes (CNTs) during the manufacturing process. The main goal of the study aims at providing a systematic investigation of the effects of atomistic defects on the nanomechanical properties and fracture behaviors of single-walled CNTs (SWCNTs) using molecular dynamics (MD) simulation. Furthermore, the correlation between local stress distribution and fracture evolution is studied. Key parameters and factors under investigation include the number, type (namely the vacancy and Stone-Wales defects), location and distribution of defects. Results show that the nanomechanical More >

  • Open Access

    ARTICLE

    An Investigation into the Mechanical Behavior of Single-Walled Carbon Nanotubes under Uniaxial Tension Using Molecular Statics and Molecular Dynamics Simulations

    Yeau-Ren Jeng1,Ping-Chi Tsai1,Guo-Zhe Huang1, I-Ling Chang1

    CMC-Computers, Materials & Continua, Vol.11, No.2, pp. 109-126, 2009, DOI:10.3970/cmc.2009.011.109

    Abstract This study performs a series of Molecular Dynamics (MD) and Molecular Statics (MS) simulations to investigate the mechanical properties of single-walled carbon nanotubes (SWCNTs) under a uniaxial tensile strain. The simulations focus specifically on the effects of the nanotube helicity, the nanotube diameter and the percentage of vacancy defects on the bond length, bond angle and tensile strength of zigzag and armchair SWCNTs. In this study, a good agreement is observed between the MD and MS simulation results for the stress-strain response of the SWCNTs in both the elastic and the plastic deformation regimes. The… More >

Displaying 621-630 on page 63 of 701. Per Page