Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (689)
  • Open Access

    ARTICLE

    Dynamic Interaction Analysis of Coupled Axial-Torsional-Lateral Mechanical Vibrations in Rotary Drilling Systems

    Sabrina Meddah1,2,*, Sid Ahmed Tadjer3, Abdelhakim Idir4, Kong Fah Tee5,6,*, Mohamed Zinelabidine Doghmane1, Madjid Kidouche1

    Structural Durability & Health Monitoring, Vol.19, No.1, pp. 77-103, 2025, DOI:10.32604/sdhm.2024.053541 - 15 November 2024

    Abstract Maintaining the integrity and longevity of structures is essential in many industries, such as aerospace, nuclear, and petroleum. To achieve the cost-effectiveness of large-scale systems in petroleum drilling, a strong emphasis on structural durability and monitoring is required. This study focuses on the mechanical vibrations that occur in rotary drilling systems, which have a substantial impact on the structural integrity of drilling equipment. The study specifically investigates axial, torsional, and lateral vibrations, which might lead to negative consequences such as bit-bounce, chaotic whirling, and high-frequency stick-slip. These events not only hinder the efficiency of drilling… More >

  • Open Access

    ARTICLE

    Enhancing Thermal Performance of Building Envelopes Using Hemp Wool and Wood Wool with Phase Change Materials

    Salma Kouzzi1,*, Mouniba Redah1, Souad Morsli2, Mohammed El Ganaoui3, Mohammed Lhassane Lahlaouti1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.12, pp. 2741-2755, 2024, DOI:10.32604/fdmp.2024.055890 - 23 December 2024

    Abstract This study investigates the potential for enhancing the thermal performance of external walls insulation in warmer climates through the combination of phase change materials (PCMs) and bio-based materials, specifically hemp wool and wood wool. Experimental tests using the heat flow method (HFM), and numerical simulations with ANSYS Fluent software were conducted to assess the dynamic thermal distribution and fluid-mechanical aspects of phase change materials (PCMs) within composite walls. The results demonstrate a notable reduction in peak indoor temperatures, achieving a 58% reduction with hemp wool with a close 40% reduction with wood wool when combined More >

  • Open Access

    REVIEW

    A Review on Coir Fibre, Coir Fibre Reinforced Polymer Composites and Their Current Applications

    Chioma Ifeyinwa Madueke1,*, Okwunna Maryjane Ekechukwu2, Funsho Olaitan Kolawole3

    Journal of Renewable Materials, Vol.12, No.12, pp. 2017-2047, 2024, DOI:10.32604/jrm.2024.055207 - 20 December 2024

    Abstract Coir fibre has generated much interest as an eco-friendly, sustainable fibre with low density. This review findings show that coir fibres are abundant, with an average global annual production of 1019.7 × 103 tonnes, with about 63% of this volume produced from India. Extraction of coir has been carried out through water retting. However, the retting period has been limited to 4–10 months. The lignin content of coir is more than 60% higher than that of other natural fibres; hence, coir could double as a source of lignin for other applications. The diameter of coir… More >

  • Open Access

    ARTICLE

    Mechanical Properties of Copper with Dendritic Silver Inclusions: Insights from Molecular Dynamics Simulations

    Nicolás Amigo*

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 3665-3678, 2024, DOI:10.32604/cmc.2024.059895 - 19 December 2024

    Abstract This study explores the mechanical behavior of single-crystal copper with silver inclusions, focusing on the effects of dendritic and spherical geometries using molecular dynamics simulations. Uniaxial tensile tests reveal that dendritic inclusions lead to an earlier onset of plasticity due to the presence of high-strain regions at the complex inclusion/matrix interfaces, whereas spherical inclusions exhibit delayed plasticity associated with their symmetric geometry and homogeneous strain distribution. During the plastic regime, the dislocation density is primarily influenced by the volume fraction of silver inclusions rather than their shape, with spherical inclusions showing the highest densities due… More >

  • Open Access

    ARTICLE

    Hybrid Epoxy Composites Reinforced with Coconut Sheath and Basalt Fibres: Enhancing Mechanical and Thermal Performance for Sustainable Applications

    Subburayan Manickavasagam Suresh Kumar1, Sundaravel Balachandran2, Seong Cheol Kim3, Balamurugan Rathinam4,*, Vanaraj Ramkumar3,5,*

    Journal of Polymer Materials, Vol.41, No.4, pp. 207-218, 2024, DOI:10.32604/jpm.2024.057901 - 16 December 2024

    Abstract The present study focuses on sustainable biopolymer composites created from coconut sheath and basalt fibres, which are biodegradable, environmentally benign, and have low carbon footprints. High specific strength, superior mechanical performance, reduced weight, and improved thermal stability are all displayed by these materials. Four hybrid epoxy composites (C1–C4) were produced utilizing five stacking sequences and compression moulding, demonstrating that hybridization considerably enhances mechanical characteristics. The hybrid and pure basalt fibre composites have larger storage moduli than untreated coconut sheath fibre-reinforced epoxy (2.1 GPa). The greatest glass transition temperature (Tg) for C4 has been determined to More > Graphic Abstract

    Hybrid Epoxy Composites Reinforced with Coconut Sheath and Basalt Fibres: Enhancing Mechanical and Thermal Performance for Sustainable Applications

  • Open Access

    ARTICLE

    Sustainable Composite of Cardanol Based Phenalkamine Cured Epoxy Systems: Fabrication, Characterization and Mechanical Performance Evaluation for Emerging Applications

    Aswinraj Anbazhagan1, Piyali Roy Choudhury1, Sahila Sambandam2, Jayakumari Lakshmanan Saraswathi1,*

    Journal of Polymer Materials, Vol.41, No.4, pp. 299-313, 2024, DOI:10.32604/jpm.2024.056261 - 16 December 2024

    Abstract Petroleum-based cured epoxy polymers, used widely in aerospace, marine, and automotive industries, pose environmental threats due to their toxicity. Therefore, developing alternative curing systems for epoxy resin is crucial. This study explores the use of bio-based phenalkamines as curing agents for epoxy resin to enhance the mechanical properties of polymer composites and fiber-reinforced laminates. The functional groups, morphology, and thermal properties of the composites were analyzed using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). Mechanical properties of two epoxy systems—EP-TETA (triethylenetetramine-cured) and EP-PA (phenalkamine-cured)—were evaluated according to ASTM standards. More > Graphic Abstract

    Sustainable Composite of Cardanol Based Phenalkamine Cured Epoxy Systems: Fabrication, Characterization and Mechanical Performance Evaluation for Emerging Applications

  • Open Access

    PROCEEDINGS

    Effects of Hatch Spacing on Pore Segregation and Mechanical Properties During Blue Laser Directed Energy Deposition of AlSi10Mg

    Hongze Wang1,2,3,*, An Wang1,2, Zijue Tang1,2, Yi Wu1,2,3, Haowei Wang1,2,3,4

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012430

    Abstract Hatch spacing is a crucial parameter for achieving superior mechanical properties during the process of laser directed energy deposition (L-DED) process. However, the optimum hatch spacing is based on trial and error approaches using pre-existing experience. In this paper, we have systematically compared the porosity characteristics, microstructure evolution, and thermal gradients in double tracks of AlSi10Mg under various hatch spacings during blue laser directed energy deposition (BL-DED). A peculiar phenomenon of pore segregation is observed at the boundary of the overlapping zone of adjacent deposited tracks, where the porosity is almost 8 times that of… More >

  • Open Access

    PROCEEDINGS

    Programmable Mechanical Properties of Additive Manufactured Novel Steel

    Jinlong Su1,2, Chaolin Tan2,*, Swee Leong Sing1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012733

    Abstract Tailoring thermal history during additive manufacturing (AM) offers a viable approach to customising the microstructure and properties of materials without changing alloy compositions, which is generally overlooked as it is hard to achieve in commercial materials. In this work, a customised Fe-Ni-Ti-Al maraging steel with rapid precipitation kinetics offers the opportunity to leverage thermal history during AM for achieving large-range tunable strength-ductility combinations without post heat treatment or changing alloy chemistry. The Fe-Ni-Ti-Al maraging steel was processed by laser-directed energy deposition (LDED) with different deposition strategies to tailor the thermal history. As the phase transformation… More >

  • Open Access

    PROCEEDINGS

    Superior Mechanical Properties of a Zr-Based Bulk Metallic Glass via Laser Powder Bed Fusion Process Control

    Bosong Li1, Jamie J. Kruzic1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-2, 2024, DOI:10.32604/icces.2024.011331

    Abstract Additive manufacturing has made the fabrication of large-dimensioned bulk metallic glasses (BMGs) achievable; however, questions remain regarding how to control the processing parameters to obtain dense and fully amorphous BMGs with desirable mechanical properties. Here, laser powder bed fusion (LPBF) was used to produce dense and fully amorphous Zr59.3Cu28.8Nb1.5Al10.4 BMG samples from two different starting powders within a large processing window of laser powers and scanning speeds. X-ray diffraction (XRD) revealed that fully amorphous materials with high relative densities (>99%) were obtained when the LPBF energy density ranged from ~20 J/mm3 up to ~33 J/mm3 for coarse… More >

  • Open Access

    PROCEEDINGS

    Numerical Study of Fracture Mechanisms in Metal Powder Bed Fusion Additive Manufacturing Processes

    Lu Liu1, Bo Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012741

    Abstract Powder-Bed Fusion (PBF) is a prominent metal additive manufacturing technology known for its adaptability and commercial viability. However, it is often hindered by defects such as voids, un-melted particles, microcracking, and columnar grains, which are generally more pronounced than those found in traditional manufacturing methods. Microcracking, in particular, poses a significant challenge, limiting the use of PBF materials in safety-critical applications across various industries. This study presents an advanced computational framework that effectively addresses the complex interactions of thermal, fluid dynamics, structural mechanics, crystallization, and fracture phenomena at meso and macroscopic levels. This framework has More >

Displaying 1-10 on page 1 of 689. Per Page