Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (719)
  • Open Access

    ARTICLE

    Dynamic Response of Bridge Pile Foundations under Pile-Soil-Fault Interaction in Seismic Areas

    Yujie Li1, Zhongju Feng1,*, Fuchun Wang1, Jiang Guan2, Xiaoqian Ma3

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1549-1573, 2025, DOI:10.32604/cmes.2025.064785 - 30 May 2025

    Abstract To study the dynamic response rules of pile foundations of mega-bridges over faults in strong seismic areas, a finite element model of the pile foundation-soil-fault interaction of the Haiwen Bridge is established. The 0.2–0.6 g peak acceleration of the 5010 seismic waves is input to study the effect of the seismic wave of different intensities and the distance changes between the fault and the pile foundation on the dynamic response of the pile body. The results show that the soil layer covering the bedrock amplifies the peak pile acceleration, and the amplifying effect decreases with… More >

  • Open Access

    ARTICLE

    Stretch Enhances Secretion of Extracellular Vehicles from Airway Smooth Muscle Cells via Endoplasmic Reticulum Stress Signaling in Relation to Ventilator-Induced Lung Injury

    MINGZHI LUO#,*, CHANGYU SUN#, JIA GUO, XIANGRONG ZHANG, JING ZHANG, XUANYU SHI, LEI LIU, YAN PAN, JINGJING LI, LINHONG DENG*

    BIOCELL, Vol.49, No.5, pp. 833-855, 2025, DOI:10.32604/biocell.2025.063869 - 27 May 2025

    Abstract Background: Mechanical ventilation (MV) provides life support for patients with severe respiratory distress but can simultaneously cause ventilator-induced lung injury (VILI). However, due to a poor understanding of its mechanism, there is still a lack of effective remedies for the often-deadly VILI. Recent studies indicate that the stretch associated with MV can enhance the secretion of extracellular vesicles (EVs) and induce endoplasmic reticulum (ER) stress in airway smooth muscle cells (ASMCs), both of which can contribute to VILI. But whether MV-associated stretch enhances the secretion of EVs via ER stress in ASMCs as an underlying… More > Graphic Abstract

    Stretch Enhances Secretion of Extracellular Vehicles from Airway Smooth Muscle Cells via Endoplasmic Reticulum Stress Signaling in Relation to Ventilator-Induced Lung Injury

  • Open Access

    REVIEW

    Physical, Mechanical and Chemical Properties as a Decision-Support Tool to Promote Alternative Woods: Case of Dabema (Piptadeniastrum africanum) in Cameroon

    John Nwoanjia1, Jean Jalin Eyinga Biwôlé1,2,*, Joseph Zobo Mfomo1, Evariste Fedoung Fongnzossie1, Antonio Pizzi2, Salomé Ndjakomo Essiane3, Achille Bernard Biwole1

    Journal of Renewable Materials, Vol.13, No.5, pp. 901-914, 2025, DOI:10.32604/jrm.2025.02024-0005 - 20 May 2025

    Abstract This review aims to identify the assets and limitations of Dabema (Piptadeniastrum africanum) as a sustainable alternative to traditional timber species for furniture and construction applications. Dabema is characterized by its high density and dimensional stability, meeting ASTM (American Society for Testing and Materials) standards for mechanical strength, which is essential for promoting its use. However, its limited availability in trade and ingrained habits of use are obstacles to its widespread commercialization. In addition, thermal and oleothermal treatments have shown great potential for improving the characteristics of this wood, although they require ongoing optimization and rigorous More > Graphic Abstract

    Physical, Mechanical and Chemical Properties as a Decision-Support Tool to Promote Alternative Woods: Case of Dabema (<i>Piptadeniastrum africanum</i>) in Cameroon

  • Open Access

    ARTICLE

    Leveraging Safe and Secure AI for Predictive Maintenance of Mechanical Devices Using Incremental Learning and Drift Detection

    Prashanth B. S1,*, Manoj Kumar M. V.2,*, Nasser Almuraqab3, Puneetha B. H4

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4979-4998, 2025, DOI:10.32604/cmc.2025.060881 - 19 May 2025

    Abstract Ever since the research in machine learning gained traction in recent years, it has been employed to address challenges in a wide variety of domains, including mechanical devices. Most of the machine learning models are built on the assumption of a static learning environment, but in practical situations, the data generated by the process is dynamic. This evolution of the data is termed concept drift. This research paper presents an approach for predicting mechanical failure in real-time using incremental learning based on the statistically calculated parameters of mechanical equipment. The method proposed here is applicable… More >

  • Open Access

    REVIEW

    Advances in Pediatric Heart Valve Replacement: A State-of-the-Art Review

    Baker M. Ayyash1, Yen Chuan Chen2, Ahmad Sallehuddin2, Ziyad M. Hijazi1,*

    Congenital Heart Disease, Vol.20, No.2, pp. 143-179, 2025, DOI:10.32604/chd.2025.064599 - 30 April 2025

    Abstract Pediatric heart valve replacement (PHVR) remains a challenging procedure due to the unique anatomical and physiological characteristics of children, including growth and development, as well as the long-term need for durable valve function. This review provides an overview of both surgical and transcatheter options for aortic, mitral, pulmonary, and tricuspid valve replacements in pediatric patients, highlighting the indications, outcomes, and advancements in technology and technique. Surgical valve replacement traditionally involves the implantation of biological or mechanical prosthetic valves, with biological valves being preferred in children to reduce the need for lifelong anticoagulation therapy. However, the… More >

  • Open Access

    ARTICLE

    Study on the Seepage Characteristics of Deep Tight Reservoirs Considering the Effects of Creep

    Yongfu Liu1, Haitao Zhao1, Xingliang Deng1, Baozhu Guan1, Jing Li2,*, Chengqiang Yang2, Guipeng Huang2

    Energy Engineering, Vol.122, No.5, pp. 1735-1754, 2025, DOI:10.32604/ee.2025.063706 - 25 April 2025

    Abstract The seepage characteristics of shale reservoirs are influenced not only by multi-field coupling effects such as stress field, temperature field, and seepage field but also exhibit evident creep characteristics during oil and gas exploitation. The complex fluid flow in such reservoirs is analyzed using a combination of theoretical modeling and numerical simulation. This study develops a comprehensive mathematical model that integrates the impact of creep on the seepage process, with consideration of factors including stress, strain, and time-dependent deformation. The model is validated through a series of numerical experiments, which demonstrate the significant influence of… More >

  • Open Access

    ARTICLE

    Fabrication and Mechanical, Dielectric and Optical Properties of Cellulose Paper Embedded with SrAl2O4:Eu,Dy Phosphor

    Vitalii Chornii1,2,*, Serhii G. Nedilko1, Maxim Lazarenko1, Oleksandr Alekseev1, Mariia Sosnovs’ka1, Valerii Barbash3, Olga Yashchenko3, Syed Shabhi Haider4, Yaroslav Zhydachevskyy4, Andrzej Suchocki4

    Journal of Renewable Materials, Vol.13, No.4, pp. 653-668, 2025, DOI:10.32604/jrm.2025.058211 - 21 April 2025

    Abstract The work deals with cellulose paper filled with nanocellulose and SrAl2O4:Eu,Dy oxide phosphor. It was found that both nanocellulose and oxide improve the tensile strength of the composites obtained. The samples with the oxide demonstrate a long-lasting photoluminescence (PL) under sunlight and ultra-violet (UV) illumination. Room-temperature the PL spectra reveal a wide multicomponent band spreading over all the visible spectral regions. The short-wavelength part of the band is ascribed to the cellulose-related luminescence, while the long-wavelength PL component with maxima near 540 nm corresponds to the luminescence of the SrAl2O4:Eu,Dy phosphor. The dependency of the PL… More > Graphic Abstract

    Fabrication and Mechanical, Dielectric and Optical Properties of Cellulose Paper Embedded with SrAl<sub>2</sub>O<sub>4</sub>:Eu,Dy Phosphor

  • Open Access

    ARTICLE

    Green Natural Rubber Foam and Enhanced Physical Properties from Sugarcane Bagasse Ash

    Pattaranun Thuadaij, Bualoy Chanpaka*

    Journal of Renewable Materials, Vol.13, No.4, pp. 753-772, 2025, DOI:10.32604/jrm.2025.057590 - 21 April 2025

    Abstract Natural rubber (NR) foams are widely used. However, further studies are required for preparing eco-friendly NR foam and determining the optimum physical properties appropriate for application. This study aims to create an NR foam from rubber reinforced with sugarcane bagasse ash (SCBA) and sodium alginate. The results showed that the SCBA was primarily composed of silica or silicon dioxide (87.52% by weight) and carbon (11.41% by weight). This study investigated the influence of the amount of sodium alginate (0–5 phr) used in the NR foam formation. The addition of SCBA on the NR foam affected More > Graphic Abstract

    Green Natural Rubber Foam and Enhanced Physical Properties from Sugarcane Bagasse Ash

  • Open Access

    ARTICLE

    Physical and Mechanical Properties of Gmelina Wood (Gmelina arborea Roxb.) Modified with Furfuryl Alcohol-Tannin

    Mahdi Mubarok1,*, Pirda Maharani Nafisah1, Adi Santoso2, Saefudin2,*, Efrida Basri2, Yusuf Sudo Hadi1,3, Adik Bahanawan2, Rohmah Pari2, Imam Busyra Abdillah1, Jingjing Liao4, Dede Hermawan1, Trisna Priadi1, Philippe Gérardin5, Wayan Darmawan1

    Journal of Renewable Materials, Vol.13, No.4, pp. 731-752, 2025, DOI:10.32604/jrm.2024.057476 - 21 April 2025

    Abstract Furfurylation, a renowned chemical modification technique, uses furfuryl alcohol to enhance the properties of wood. This technology can be further refined by incorporating renewable tannins, which promote cross-linking with furfuryl alcohol. This study investigates the effects of furfurylation and tannin-modified furfurylation on the physical and mechanical properties of tropical Gmelina wood (Gmelina arborea Roxb.). Experiments involved impregnating Gmelina wood with aqueous solutions of furfuryl alcohol (FA) at 40% and 70% concentrations, as well as FA-tannin combinations (FA 40%-TA and FA 70%-TA), followed by polymerization at 103°C. The results demonstrated that both FA and FA-tannin treatments significantly… More > Graphic Abstract

    Physical and Mechanical Properties of Gmelina Wood (<i>Gmelina arborea</i> Roxb.) Modified with Furfuryl Alcohol-Tannin

  • Open Access

    ARTICLE

    Enhancement of Mechanical Properties of Natural Rubber Filled Activated Carbon Materials from Agricultural Waste

    Pollawat Charoeythornkhajhornchai, Piyamas Saehia, Thidaporn Butchan, Nawapol Lertumpai, Worawut Muangrat*

    Journal of Renewable Materials, Vol.13, No.4, pp. 817-827, 2025, DOI:10.32604/jrm.2025.02024-0017 - 21 April 2025

    Abstract Herein, cure characteristics, morphology, and mechanical properties of natural rubber filled with activated carbon-based materials were investigated. Carbon-based materials were prepared from bagasse, coffee grounds and pineapple crowns by the pyrolysis method at temperatures in the range of 300°C. As-synthesized carbon materials were characterized by optical microscopy (OM), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR) to analyze size distribution, morphology, and functional groups, respectively. OM and SEM analysis revealed that particles, flakes, and a small quantity of fiber-like carbon were obtained using bagasse and pineapple crown as raw materials, while honeycomb-like carbon materials… More > Graphic Abstract

    Enhancement of Mechanical Properties of Natural Rubber Filled Activated Carbon Materials from Agricultural Waste

Displaying 1-10 on page 1 of 719. Per Page