Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (622)
  • Open Access

    ARTICLE

    Synergistic Effect of Nano-α-Al2O3 Particles on Mechanical Properties of Glass-fibre reinforced Epoxy Hybrid Composites

    ANIL KUMAR VEERAPANENI1, CHANDRASEKAR KUPPAN2,*, MURTHY CHAVALI3,*

    Journal of Polymer Materials, Vol.37, No.3-4, pp. 121-130, 2020, DOI:10.32381/JPM.2020.37.3-4.1

    Abstract The mechanical properties of hybrid nanocomposites made of epoxy/glass fibre dispersed with nano-α-Al2 O3 powder at different weight percentages were studied.The effect of nano-α- Al2O3 size and wt% on mechanical properties like tensile, flexural, interlaminar shear stress and hardness enhanced because of their higher surface area and interfacial polymer-metal interaction. The nanoparticle embedded laminates have shown improvement in flexural strength,and hardness when compared to laminate without nano-α-Al2 O3. The properties varied with the loading and size of the nanoparticles. The tensile strength was highest for 0.5 wt% of 200nm nano-α-Al2O3, which is 167.80 N/m2.The highest flexural strength was observed for… More >

  • Open Access

    ARTICLE

    Structural, Thermal, Optical, Mechanical and Morphological Properties of ABS/RGO with DBDPE Nanocomposites

    İBRAHIM KARTERIa,b,*, MUSTAFA ÖZYEŞILDAĞb

    Journal of Polymer Materials, Vol.38, No.1-2, pp. 167-177, 2021, DOI:10.32381/JPM.2021.38.1-2.13

    Abstract This study aims to provide a comprehensive account of chemically reduced graphene oxide (RGO) and decabromodiphenyl ethane (DBDPE) filled acrylonitrile-butadiene-styrene (ABS) multifunctional filaments for fused deposition modeling (FDM) applications. ABS/RGO with DBDPE nanocomposites (ABS-GDM) were fabricated by single-screw extrusion at a diameter of 1.75 mm. The proportion of RGO and DBDPE for the ABS-GDM filaments was set to 0.75 wt%. The properties of the ABS-GDM were determined using optical, mechanical, thermal, and morphological characteristics (using scanning electron microscopy). A three-dimensional (3D) model was successfully printed using the developed ABS-GDM filaments for FDM 3D printing. These ABS-GDM have the potential to… More >

  • Open Access

    ARTICLE

    Preparation of Oil Shale Ash Filled High Density Polyethylene Composite Materials and their Characterization

    RAID BANAT1,*, MANAL AL-RAWASHDEH1, HEBA ALKHLAIFAT1

    Journal of Polymer Materials, Vol.38, No.1-2, pp. 137-151, 2021, DOI:10.32381/JPM.2021.38.1-2.11

    Abstract Composite of oil Shale ash (OSA) filler and high density polyethylene (HDPE) matrix was formulated and studied. OSA mainly composed of Ca, Si, and Fe most of which in oxide forms. OSA-HDPE composite with 0, 5, 10, 15, 20, and 25 wt. % OSA were produced using extrusion and hot press. Mechanical, morphological, and water uptake properties of the composite are discussed herein. While the tensile stress at yield, 47 MPa, restored its value close to the neat HDPE, an increase in the mean values of the tensile stress at rapture from 19 to 33 MPa, the tensile modulus from… More >

  • Open Access

    ARTICLE

    Flammabilty and Mechanical Performance of MWCNT Incorporated Cyante Ester/Carbon Fiber Composites

    JITENDRA. S. TATE1,2,*, HARISH KALLAGUNTA1,2, ANDREW ALVAREZ1

    Journal of Polymer Materials, Vol.38, No.1-2, pp. 101-120, 2021, DOI:10.32381/JPM.2021.38.1-2.9

    Abstract The exponential growth in composites and their increased use in military, aerospace, energy, and automotive industry is driven by their high performance and light weight. High performance thermosetting polymers such as cyanate ester have received considerable attention due to its ability of volatile-free curing. It also offers advantages such as excellent radiation shielding, high thermal stability, and hydrophobicity with lots of potential for enhanced mechanical strength. This research article discusses the results of effects of multiwalled carbon nanotubes (MWCNT) at predetermined loading levels of 0.5wt%, 1wt% and 1.5wt% on mechanical, thermal and flammability properties of cyanate ester modified carbon fiber… More >

  • Open Access

    ARTICLE

    Glass/Biofibers/Epoxy Methacrylate of Bisphenol-C Sandwich Composites: Comparative Mechanical and Electrical Properties and Chemical Resistance

    RITESH D. BHATT, JIGNESH P. PATEL, P. H. PARSANIA*

    Journal of Polymer Materials, Vol.38, No.1-2, pp. 71-87, 2021, DOI:10.32381/JPM.2021.38.1-2.7

    Abstract Glass/Biofibers/Epoxy methacrylate of bisphenol-C (G/BF/EBCMAS) sandwich composites was prepared by compression molding. G/BF/EBCMAS showed good mechanical and good to excellent electrical properties and excellent chemical resistance. Studied properties are compared with EBCMAS and G/EBCMAS. In comparison with G/EBCMAS, G/BF/EBCMAS showed considerable decline of tensile strength (18-63.4%), flexural strength (18.8-38.7%), flexural modulus (12.8-50.7%), Izod impact strength (17.4-43.5%), Barcol hardness (2.1-16.7%) and dielectric strength (23.8-76.8%) except flexural strength of G/BM/EBCMAS. G/WC/EBCMAS (96.7%), G/B/EBCMAS (79.2%), G/GN/EBCMAS (83.3%) and G/RH/EBCMAS (97.9%) showed decline of volume resistivity, whereas other sandwich composites showed 1150-58233% improvement. The decrease in mechanical properties and dielectric strength of G/BF/EBCMAS sandwich… More >

  • Open Access

    ARTICLE

    On the Engineering Properties of TPV derived from Hypalon, PP and a Compatibilizer (PMES-MA) prepared by Dynamic Vulcanization

    ASIS K. MANDAL1, DEBABRATA CHAKRABORTY2, MAHUYA DAS3, SAMIR K SIDDHANTA4,*

    Journal of Polymer Materials, Vol.38, No.1-2, pp. 21-34, 2021, DOI:10.32381/JPM.2021.38.1-2.3

    Abstract Elastomeric chlorosulfonated polyethylene (Hypalon) and thermoplastic polypropylene (PP) based thermoplastic Vulcanizates (TPVs) were prepared in presence of different doses of partial methyl ester of styrene-maleic anhydride copolymer (PMES-MA) as compatibilizer employing dynamic vulcanization technique. The mechanical analysis of the prepared TPVs exhibited significant improvements in stress at 25% modulus, ultimate tensile strength (UTS), and hardness values. FTIR studies revealed that a chemical interaction had taken place between hypalon and compatibilizer during the process of dynamic vulcanization which led to an enhancement of interfacial adhesion between them. The two-phase morphologies were clearly observed by scanning electron microscopic studies. The Tg values… More >

  • Open Access

    ARTICLE

    The Thermal Properties, Mechanical Performances and Crystallization behaviors of Poly(aryl Ether Ketone) Copolymers by the effect of Ether/Ketone Ratio

    ZHIHUI HUANG1, JIAMIAO CHEN1, YANPING HUO1, JINGWEI ZHAO2

    Journal of Polymer Materials, Vol.38, No.3-4, pp. 257-269, 2021, DOI:10.32381/JPM.2021.38.3-4.7

    Abstract The effect of the ether/keto ratios on the thermal properties, mechanical performances and crystallization behavior of the Poly(aryl ether ketone)s (PAEK) were investigated. A formula was proposed the estimate the melting temperatures of the PAEKs with high accuracy. Glass transition temperatures were affected by the ether/keto ratios and molecular weights, and were related with the brittle-tough transition of the PAEKs. Mechanical performances of tensile, impact, flexural and compressive strength decreased with the increase of ether/keto ratios, while elongation had a trend of increase. The non-isothermal crystallization curves exhibited well linearity when treated with Jeziorny’s model, and two crystallization processes were… More >

  • Open Access

    ARTICLE

    Enhancing the Performance of Polylactic Acid (PLA) Reinforcing with Sawdust, Rice Husk, and Bagasse Particles

    A. MADHAN KUMAR1, K. JAYAKUMAR2,*, M. SHALINI3

    Journal of Polymer Materials, Vol.39, No.3-4, pp. 269-281, 2022, DOI:10.32381/JPM.2022.39.3-4.7

    Abstract Polylactic acid (PLA) is the most popular thermoplastic biopolymer providing a stiffness and strength alternative to fossil-based plastics. It is also the most promising biodegradable polymer on the market right now, thus gaining a substitute for conservative artificial polymers. Therefore, the current research focuses on synthesizing and mechanical characterization of particlereinforced PLA composites. The hot compression molding technique was used to fabricate PLA-based composites with 0, 2.5, 5, and 7.5 weight % of sawdust, rice husk, and bagasse particle reinforcements to enhance the performance of the PLA. The pellets of PLA matrix were taken with an average size of 3… More >

  • Open Access

    ARTICLE

    Fabrication and Comparative Properties of Sustainable Epoxy Methacrylate of Bisphenol-C-Jute/Treated JuteNatural Fibers Sandwich Composites: Part-2

    RITESH D. BHATT, JIGNESH P. PATEL, PARSOTAM H. PARSANIA*

    Journal of Polymer Materials, Vol.39, No.3-4, pp. 223-239, 2022, DOI:10.32381/JPM.2022.39.3-4.4

    Abstract Compression-molded epoxy methacrylate of bisphenol-C-jute/treated jute-banana/groundnut/ cane sugar/pineapple leaf/rice husk/wheat husk sandwich composites were fabricated under 5 MPa pressure at room temperature for 3 h. Alkali treated jute-natural fiber sandwich composites displayed considerably improved mechanical properties over untreated jute-natural fiber sandwich composites due to surface modification of the jute fibers. Both types of sandwich composites showed high water uptake tendency, excellent hydrolytic stability against acids, alkali, and salt solutions, and also a longer equilibrium time at 30o C. Alkali treated sandwich composites revealed a considerably lower water uptake tendency than untreated sandwich composites. Observed water uptake trend is H2 SO4More >

  • Open Access

    ARTICLE

    Fabrication and Comparative Properties of Sustainable Epoxy Methacrylate of Bisphenol-C-Jute/Treated JuteNatural Fibers Sandwich Composites: Part-1

    RITESH D. BHATT, JIGNESH P. PATEL, PARSOTAM H. PARSANIA*

    Journal of Polymer Materials, Vol.39, No.3-4, pp. 205-221, 2022, DOI:10.32381/JPM.2022.39.3-4.3

    Abstract Epoxy methacrylate of bisphenol-C-jute/treated jute and their sandwich composites of white coir, brown coir, wild almond, bamboo, betel nut, and palmyra were prepared by a compression molding technique under 5MPa pressure and at room temperature for three h. The neat sample showed almost double tensile strength than its jute composite, while it is comparable for treated jute. The composites revealed substantially improved flexural strength compared to neat. The neat, jute/treated jute and their sandwich composites indicated good impact strength, pretty good Barcol hardness, and fairly good electric strength. The neat sample showed excellent volume resistivity, while jute/treated jute and their… More >

Displaying 11-20 on page 2 of 622. Per Page