Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (25)
  • Open Access


    A Modified Rate-Dependent Peridynamic Model with Rotation Effect for Dynamic Mechanical Behavior of Ceramic Materials

    Yaxun Liu1,2, Lisheng Liu1,2,*, Hai Mei1,2, Qiwen Liu1,2, Xin Lai1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09007

    Abstract As a mathematical expression of the dynamic mechanical behavior, the constitutive model plays an indispensable role in numerical simulations of ceramic materials. The current bond-based peridynamic constitutive models can accurately describe the dynamic mechanical behavior of partial ceramic materials under impact loading, however, the predicted value of the Poisson’s ratio is 0.25, which is not true for most of the known ceramic materials. Herein, based on the existing bond-based peridynamic constitutive model, the current study utilizes the description of tangential bond force and considers the influence of bond force on rotation to accurately predict the Poisson's ratio of different types… More >

  • Open Access


    Numerical Study of the Biomechanical Behavior of a 3D Printed Polymer Esophageal Stent in the Esophagus by BP Neural Network Algorithm

    Guilin Wu1,2, Shenghua Huang1, Tingting Liu3, Zhuoni Yang3, Yuesong Wu2, Guihong Wei1, Peng Yu1,*, Qilin Zhang4, Jun Feng4, Bo Zeng5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2709-2725, 2024, DOI:10.32604/cmes.2023.031399

    Abstract Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life and prognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinical practice. However, esophageal stents of different types and parameters have varying adaptability and effectiveness for patients, and they need to be individually selected according to the patient’s specific situation. The purpose of this study was to provide a reference for clinical doctors to choose suitable esophageal stents. We used 3D printing technology to fabricate esophageal stents with different ratios of thermoplastic polyurethane (TPU)/(Poly-ε-caprolactone) PCL polymer,… More >

  • Open Access


    Dynamic Mechanical Behavior and Numerical Simulation of an Ancient Underground Rock Mass under Impact Loading

    Baoping Zou*, Zhiping Liu, Weifeng Jin, Haonan Ding, Zhanyou Luo

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.1, pp. 517-539, 2023, DOI:10.32604/cmes.2022.020853

    Abstract To study the dynamic mechanical properties of tuff under different environmental conditions, the tuff from an ancient quarry in Shepan Island was prepared. The impact damage to the rock was tested using a triaxial dynamic impact mechanical testing system (TDIMTS) with different ground stresses, temperatures, and groundwater pressures. The time-strain relationship, dynamic stress-strain relationship, energy dissipation law, energy-peak strain relationship, and the impact damage pattern of the tuff specimens under impact air pressures were investigated. The TDIMTS experiment on ancient underground rock mass under impact loading was also simulated using the finite element analysis software LS-DYNA based on the Holmquist-Johnson-Cook… More >

  • Open Access


    Thermomechanical Behavior of Brake Drums Under Extreme Braking Conditions

    T. Khatir1,2, M. Bouchetara2, K. Derrar2, M. Djafri3, S. Khatir4, M. Abdel Wahab5,6,*

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2259-2273, 2022, DOI:10.32604/cmc.2022.020879

    Abstract Braking efficiency is characterized by reduced braking time and distance, and therefore passenger safety depends on the design of the braking system. During the braking of a vehicle, the braking system must dissipate the kinetic energy by transforming it into heat energy. A too high temperature can lead to an almost total loss of braking efficiency. An excessive rise in brake temperature can also cause surface cracks extending to the outside edge of the drum friction surface. Heat transfer and temperature gradient, not to forget the vehicle's travel environment (high speed, heavy load, and steeply sloping road conditions), must thus… More >

  • Open Access


    Crystallization and Dynamic Mechanical Behavior of Coir Fiber Reinforced Poly(Butylene Succinate) Biocomposites

    Xu Yan1, Changheng Liu2, Liang Qiao1, Kaili Zhu2, Hongsheng Tan1,*, Shuhua Dong1, Zhitao Lin1

    Journal of Renewable Materials, Vol.10, No.4, pp. 1039-1048, 2022, DOI:10.32604/jrm.2022.017239

    Abstract The crystallization behavior, crystal morphology and form, and viscoelastic behavior of poly(butylene succinate) (PBS) and coir fiber/PBS composites (CPB) were investigated by differential scanning calorimetry (DSC), polarized optical microscopy (POM), X-ray diffraction (XRD) and dynamic mechanical analysis (DMA). The results of DSC measurement show that the crystallization temperature increases with the filling of coir fibers. POM images reveal that the spherulitic size and crystallization behavior of PBS are influenced by the coir fibers in the composites. XRD curves show that the crystal form of pure PBS and CPB are remaining almost identical. In addition, the storage modulus of CPB significantly… More >

  • Open Access


    A Review of Basic Mechanical Behavior of Laminated Bamboo Lumber

    Assima Dauletbek1, Haitao Li1,2,*, Rodolfo Lorenzo3, Ileana Corbi4, Ottavia Corbi4, Mahmud Ashraf5

    Journal of Renewable Materials, Vol.10, No.2, pp. 273-300, 2022, DOI:10.32604/jrm.2022.017805

    Abstract Over the past decade, the physical and mechanical performances of laminated bamboo lumber (LBL)–a bamboo-based structural material, have been extensively studied using experimental, analytical, and numerical approaches. This paper presents a review of existing knowledge in the literature about the mechanical properties of LBL. The paper involved the review of the response of LBL to different types of loading such as tension, bending, compression, and shear. Based on results of the literature reviewed, the strength of LBL parallel to grain was 90–124 MPa with MOE of 10700 MPa in tension, 29.55–72.60 MPa, and MOE of 8396–11022 MPa in compression, 63.87–128.4 MPa, and MOE of 8320–10912 MPa… More >

  • Open Access


    Effect of Hole Density and Confining Pressure on Mechanical Behavior of Porous Specimens: An Insight from Discrete Element Modeling

    Yuanchao Zhang1, Zhiyuan Xia2,*, Yujing Jiang1, Miao Chen3, Jiankang Liu1, Qian Yin4

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.1, pp. 259-280, 2020, DOI:10.32604/cmes.2020.011076

    Abstract Hole-like defects are very common in natural rock or coal mass, and play an important role in the failure and mechanical behaviors of rock or coal mass. In this research, multi-holed coal specimens are constructed numerically and calibrated based on UDEC-GBM models. Then, the strength, deformation and failure behavior of the porous specimens are analyzed, with consideration of hole density (P) and confining pressure (σ3). The simulation results are highly consistent with those available experiment results, and show that the compressive strength decreases exponentially with the increasing hole density. The strength loss is mainly caused by the reduction of cohesion… More >

  • Open Access


    Mechanical Behavior of Light Trusses Made of Poplar Laminated Veneer Lumber and Connected with Bolts and Tooth Plates

    Yan Liu1, Yanfei Guo1, Xufeng Sun1,*, Meng Gong2

    Journal of Renewable Materials, Vol.8, No.9, pp. 1111-1127, 2020, DOI:10.32604/jrm.2020.09575

    Abstract Poplar Laminated Veneer Lumber (Poplar LVL) is a new type of engineering materials with high strength, good reliability and small variability. Poplar LVL is manufactured from the fast-growing poplar, which is widely used in packaging, furniture and others, however, is rarely adopted in construction. In order to explore the feasibility of poplar LVL trusses in construction of roof, four 4.5-m-span Fink-and-Howe trusses were designed and assembled, which were made of poplar LVL with bolted- and tooth-plated connections. Vertical static loading on the upper chord joints of a truss was imposed by self-balancing test device. The mechanical properties of trusses were… More >

  • Open Access


    Mechanical Characterization and Constitutive Modeling of Rabbit Aortas in Health and Diabetes

    Zhi Zhang1, Jianhua Tong1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 43-43, 2019, DOI:10.32604/mcb.2019.05721

    Abstract Diabetes is a major risk factor to cause macrovascular diseases and plays a pivotal role in aortic wall remodeling. However, the effects of diabetes on elastic properties of aortas remain largely unknown. Thirty adult rabbits (1.6-2.2 kg) were collected and the type I diabetic rabbit model was induced by injection of alloxan. A total of 15 control and 15 diabetic rabbit (abdominal) aortas were harvested. Uniaxial and biaxial tensile tests were performed to measure ultimate tensile strength and to characterize biaxial mechanical behaviors of the aortas. A material model was fitted to the biaxial experimental data to obtain constitutive parameters.… More >

  • Open Access


    Oxidative Degradation of Thermoplastic Starch Induced by UV Radiation

    Mayte M. Quispe1,*, Olivia V. López1, Marcelo A. Villar1,2

    Journal of Renewable Materials, Vol.7, No.4, pp. 383-391, 2019, DOI:10.32604/jrm.2019.04276

    Abstract Among biopolymers, thermoplastic starch (TPS) is a good candidate to obtain biomaterials because of its natural origin, biodegradable character, and processability. Exposure to ultraviolet (UV) radiation causes significant degradation of starch-based materials, inducing photooxidative reactions which result in breaking of polymer chains, production of free radical, and reduction of molar mass. These changes produce a deterioration of TPS mechanical properties, leading to useless materials after an unpredictable time. In this work, changes induced on TPS by UV radiation, analyzing structural properties and mechanical behavior, are studied. TPS was obtained through thermo-mechanical processing of native corn starch in the presence of… More >

Displaying 1-10 on page 1 of 25. Per Page