Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (26)
  • Open Access


    Effect of Interface Modification on the Mechanical Behavior of Carbon Nanotube Reinforced Composites Using Parallel Molecular Dynamics Simulations

    S. Namilae1, U. Ch,ra2, A Srinivasan3, N. Ch,ra4

    CMES-Computer Modeling in Engineering & Sciences, Vol.22, No.3, pp. 189-202, 2007, DOI:10.3970/cmes.2007.022.189

    Abstract Molecular dynamics (MD) simulations play an important predictive role in understanding the behavior of nanoscale systems. In this paper, parallel MD simulations are used to understand the mechanical behavior of interfaces in CNT based composites. We present an algorithm for parallel implementation of MD simulations of carbon nanotube (CNT) based systems using reactive bond order potentials. We then use that algorithm to model the CNT-polymer interfaces with various levels of interaction as (a) described only by long range Van Der Waals interactions (b) chemically bonded with fixed matrix and (c) chemically bonded with matrix explicitly modeled. It is shown that… More >

  • Open Access


    Process-dependent Thermal-Mechanical Behaviors of an Advanced Thin-Flip-Chip-on-Flex Interconnect Technology with Anisotropic Conductive Film Joints

    Hsien-Chie Cheng1,2, Chien-Hao Ma1, Ching-Feng Yu3, Su-Tsai Lu4, Wen-Hwa Chen2,3

    CMC-Computers, Materials & Continua, Vol.38, No.3, pp. 129-154, 2013, DOI:10.3970/cmc.2013.038.129

    Abstract User experiences for electronic devices with high portability and flexibility, good intuitive human interfaces and low cost have driven the development of semiconductor technology toward flexible electronics and display. In this study proposes, an advanced flexible interconnect technology is proposed for flexible electronics, in which an ultra-thin IC chip having a great number of micro-bumps is bonded onto a very thin flex substrate using an epoxy-based anisotropic conductive film (ACF) to form fine-pitch and reliable interconnects or joints (herein termed ACF-typed thin-flip-chip-on-flex (TFCOF) technology). The electrical and thermal -mechanical performances of the micro-joints are the key to the feasibility and… More >

  • Open Access


    Experimental and Numerical Analysis of the Polyvinyl Chloride (PVC) Mechanical Behavior Response

    H. Khellafi1, H.M. Meddah1, B. Ould Chikh1, B. Bouchouicha2, M. Benguediab2, M. Bendouba3

    CMC-Computers, Materials & Continua, Vol.49-50, No.1, pp. 31-45, 2015, DOI:10.3970/cmc.2015.049.031

    Abstract The polyvinyl chloride PVC is a polymer material widely used for a large variety of applications. The present work focuses on the identification of the physical processes responsible for the mechanical properties of the PVC containing different crystallinities rate applied in large deformation and different strain rates. In order to understand the behavior of the PVC, a thermodynamic modeling is needed. Therefore, the contribution of this approach was demonstrated by experiment and numerical modeling. This comparative study demonstrates that the proposed model provides better agreement with experimental evidence. More >

  • Open Access


    Effects of Geometry and Shape on the Mechanical Behaviors of Silicon Nanowires

    Qunfeng Liu1,2, Liang Wang1, gping Shen1

    CMC-Computers, Materials & Continua, Vol.46, No.2, pp. 105-123, 2015, DOI:10.3970/cmc.2015.046.105

    Abstract Molecular dynamics simulations have been performed to investigate the effects of cross section geometry and shape on the mechanical behaviors of silicon nanowires (Si NWs) under tensile loading. The results show that elasticity of <100> rectangular Si NWs depends on their cross section aspect ratios while the elastic limits of <110> and <111> wires show geometry independence. Despite the significant influence of axial orientation, both yield stress and Young's Modulus show the remarkable shape dependence for wires with various regular cross sections. Additionally, underlying mechanism for the geometry and shape effects on mechanical behavior are discussed based on the fundamental… More >

  • Open Access


    Magneto-Mechanical Finite Element Analysis of Single Crystalline Ni2MnGa Ferromagnetic Shape Memory Alloy

    Yuping Zhu1,2, Tao Chen1, Kai Yu1

    CMC-Computers, Materials & Continua, Vol.43, No.2, pp. 97-108, 2014, DOI:10.3970/cmc.2014.043.097

    Abstract Based on an existing micromechanical constitutive model for Ni2MnGa ferromagnetic shape memory alloy single crystals, a three-dimensional quasi-static isothermal incremental constitutive model that is suitable for finite element analysis is derived by using Hamilton's variational principle. This equation sets up the coupling relation between the magnetic vector potential and the mechanical displacement. By using the incremental equation and ANSYS software, the mechanical behaviors of martensitic variant reorientation for Ni2MnGa single crystals are analyzed under magneto-mechanical coupling action. And the finite element results agree well with the experimental data. The methods used in the paper can well describe the mechanical behaviors… More >

  • Open Access


    An Investigation into the Mechanical Behavior of Single-Walled Carbon Nanotubes under Uniaxial Tension Using Molecular Statics and Molecular Dynamics Simulations

    Yeau-Ren Jeng1,Ping-Chi Tsai1,Guo-Zhe Huang1, I-Ling Chang1

    CMC-Computers, Materials & Continua, Vol.11, No.2, pp. 109-126, 2009, DOI:10.3970/cmc.2009.011.109

    Abstract This study performs a series of Molecular Dynamics (MD) and Molecular Statics (MS) simulations to investigate the mechanical properties of single-walled carbon nanotubes (SWCNTs) under a uniaxial tensile strain. The simulations focus specifically on the effects of the nanotube helicity, the nanotube diameter and the percentage of vacancy defects on the bond length, bond angle and tensile strength of zigzag and armchair SWCNTs. In this study, a good agreement is observed between the MD and MS simulation results for the stress-strain response of the SWCNTs in both the elastic and the plastic deformation regimes. The MS simulations reveal that in… More >

Displaying 21-30 on page 3 of 26. Per Page