Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (296)
  • Open Access

    ARTICLE

    First-Principles Study on the Mechanical and Thermodynamic Properties of (NbZrHfTi)C High-Entropy Ceramics

    Yonggang Tong1,*, Kai Yang1, Pengfei Li1, Yongle Hu1, Xiubing Liang2,*, Jian Liu3, Yejun Li4, Jingzhong Fang1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.071890 - 10 November 2025

    Abstract (NbZrHfTi)C high-entropy ceramics, as an emerging class of ultra-high-temperature materials, have garnered significant interest due to their unique multi-principal-element crystal structure and exceptional high-temperature properties. This study systematically investigates the mechanical properties of (NbZrHfTi)C high-entropy ceramics by employing first-principles density functional theory, combined with the Debye-Grüneisen model, to explore the variations in their thermophysical properties with temperature (0–2000 K) and pressure (0–30 GPa). Thermodynamically, the calculated mixing enthalpy and Gibbs free energy confirm the feasibility of forming a stable single-phase solid solution in (NbZrHfTi)C. The calculated results of the elastic stiffness constant indicate that the… More >

  • Open Access

    ARTICLE

    Coupled Effects of Single-Vacancy Defect Positions on the Mechanical Properties and Electronic Structure of Aluminum Crystals

    Binchang Ma1, Xinhai Yu2, Gang Huang3,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-21, 2026, DOI:10.32604/cmc.2025.071320 - 10 November 2025

    Abstract Vacancy defects, as fundamental disruptions in metallic lattices, play an important role in shaping the mechanical and electronic properties of aluminum crystals. However, the influence of vacancy position under coupled thermomechanical fields remains insufficiently understood. In this study, transmission and scanning electron microscopy were employed to observe dislocation structures and grain boundary heterogeneities in processed aluminum alloys, suggesting stress concentrations and microstructural inhomogeneities associated with vacancy accumulation. To complement these observations, first-principles calculations and molecular dynamics simulations were conducted for seven single-vacancy configurations in face-centered cubic aluminum. The stress response, total energy, density of states More >

  • Open Access

    ARTICLE

    Manufacturing a Biodegradable Container for Planting Plants Based on an Innovative Wood-Polymer Composite

    Ksenia Anikeeva*, Ruslan Safin

    Journal of Renewable Materials, Vol.13, No.11, pp. 2235-2252, 2025, DOI:10.32604/jrm.2025.02025-0128 - 24 November 2025

    Abstract The use of wood-polymer composites (WPC) based on a polymer matrix and wood filler is a modern, environmentally friendly direction in material science. However, untreated wood filler exhibits poor adhesion to hydrophobic polymers due to its hydrophilic lignocellulose fibers. To address this, ozone treatment is employed to enhance compatibility, reduce water absorption, and regulate biodegradation rates. This study investigates the hypothesis that ozone modification of wood filler improves adhesion to thermoplastic starch, thereby enhancing the physico-mechanical properties and controlled biodegradation of WPCs under compost conditions. A comprehensive analysis was conducted on composites containing untreated and… More >

  • Open Access

    ARTICLE

    Sustainable Egg Packaging Waste Biocomposites Derived from Recycled Wood Fibers and Fungal Filaments

    Ilze Irbe1,*, Laura Andze1, Inese Filipova1,2

    Journal of Renewable Materials, Vol.13, No.11, pp. 2139-2154, 2025, DOI:10.32604/jrm.2025.02025-0107 - 24 November 2025

    Abstract Growing environmental concerns and the need for sustainable alternatives to synthetic materials have led to increased interest in bio-based composites. This study investigates the development and characterization of sustainable egg packaging waste (EPW) biocomposites derived from recycled wood fibers and fungal mycelium filaments as a natural binder. Three formulations were prepared using EPW as the primary substrate, with and without the addition of hemp shives and sawdust as co-substrates. The composites were evaluated for granulometry, density, mechanical strength, hygroscopic behavior, thermal conductivity, and fire performance using cone calorimetry. Biocomposites, composed exclusively of egg packaging waste,… More >

  • Open Access

    REVIEW

    State-of-Art on Workability and Strength of Ultra-High-Performance Fiber-Reinforced Concrete: Influence of Fiber Geometry, Material Type, and Hybridization

    Qi Feng1,2, Weijie Hu1, Lu Liu3,*, Junhui Luo4

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1589-1605, 2025, DOI:10.32604/sdhm.2025.072955 - 17 November 2025

    Abstract Ultra-high performance fiber-reinforced concrete (UHPFRC) has received extensive attention from scholars and engineers due to its excellent mechanical properties and durability. However, there is a mutually restrictive relationship between the workability and mechanical properties of UHPFRC. Specifically, the addition of fibers will affect the workability of fresh UHPFRC, and the workability of fresh UHPFRC will also affect the dispersion and arrangement of fibers, thus significantly influencing the mechanical properties of hardened UHPFRC. This paper first analyzes the research status of UHPFRC and the relationship between its workability and mechanical properties. Subsequently, it outlines the test… More >

  • Open Access

    ARTICLE

    Experimental Study on Axial Compressive Behavior and Constitutive Model of Restored Mortar Masonry

    Dongyu Teng1,2,*, Hao Tang1,3,*, Peng He1,2, Zhen Hao1,2

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1717-1731, 2025, DOI:10.32604/sdhm.2025.069751 - 17 November 2025

    Abstract In order to study the axial compression characteristics of brick masonry historical buildings, and to better protect and repair traditional mortar-brick masonry historical buildings, axial compression tests were carried out on three kinds of restored mortar (pure mud mortar, pure mortar, and mud mortar) brick masonry with restored mortar brick masonry as the object of study. The damage modes, axial compression chemical indexes (compressive strength and elastic modulus), load-displacement curves and stress-strain curves of the three kinds of restored mortar brick masonry were obtained. The experimental results show that the compressive strength of mud mortar… More >

  • Open Access

    PROCEEDINGS

    Multi-Scale Investigation on the Nonlinear Deformation of Flax Fibre Reinforced Composites Based on the Evolution of Microstructures

    Qian Li*, Jiali Zhou, Yan Li*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.4, pp. 1-1, 2025, DOI:10.32604/icces.2025.012234

    Abstract Plant fibres are emerging as sustainable composite reinforcements. Compared to synthetic fibres, the hierarchical and twisted structure of plant fibres may produce microfibril angle (MFA) reorientation and untwisting time-varying behaviors after loading and consequently decide the mechanical response of plant fibre reinforced composites (PFRCs) in macro-scale. Existing theories, assuming homogeneous fibres, cannot accurately describe the multi-scale coupling nonlinear deformations of PFRCs. Based on this, a multi-scale analysis method on the nonlinear tensile responses of flax fibre reinforced composites (FFRCs) was proposed, focusing on the effect of the evolution of MFA in micro-scale and twist angle… More >

  • Open Access

    PROCEEDINGS

    Simulation Analysis of in-Situ TiC Generation by Laser Cladding and Study on Mechanical Properties of Enhanced Coatings

    Xiaoxiao Li, Xiujiang Shi*, Yusheng Jian, Yaqi Yang, Bailing Guan, Zehong Cai

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.4, pp. 1-1, 2025, DOI:10.32604/icces.2025.011099

    Abstract Based on COMSOL simulation software, the planar Gaussian heat source model was used to simulate and analyze the surface reinforced nickel-based coating on H13 steel, and the optimal process parameters were obtained. Secondly, TiC reinforced nickel base coating was prepared in situ on H13 steel surface by laser cladding technology. The morphology, phase composition, microhardness and friction and wear properties of matrix, single coating and gradient coating were compared by scanning electron microscopy, X-ray diffractometer, microhardness tester and universal friction and wear machine. Finally, the bionic gradient TiC reinforced nickel base coating was prepared on… More >

  • Open Access

    ARTICLE

    Hybrid Taguchi and Machine Learning Framework for Optimizing and Predicting Mechanical Properties of Polyurethane/Nanodiamond Nanocomposites

    Markapudi Bhanu Prasad1, Borhen Louhichi2, Santosh Kumar Sahu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 483-519, 2025, DOI:10.32604/cmes.2025.069395 - 30 October 2025

    Abstract This study investigates the mechanical behavior of polyurethane (PU) nanocomposites reinforced with nanodiamonds (NDs) and proposes an integrated optimization–prediction framework that combines the Taguchi method with machine learning (ML). The Taguchi design of experiments (DOE), based on an L9 orthogonal array, was applied to investigate the influence of composite type (pure PU, 0.1 wt.% ND, 0.5 wt.% ND), temperature (145°C–165°C), screw speed (50–70 rpm), and pressure (40–60 bar). The mechanical tests included tensile, hardness, and modulus measurements, performed under varying process parameters. Results showed that the addition of 0.5 wt.% ND substantially improved PU performance,… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Inverse Design: Exploring Latent Space Information for Geometric Structure Optimization

    Nguyen Dong Phuong1, Nanthakumar Srivilliputtur Subbiah1, Yabin Jin2, Xiaoying Zhuang1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 263-303, 2025, DOI:10.32604/cmes.2025.067100 - 30 October 2025

    Abstract Traditional inverse neural network (INN) approaches for inverse design typically require auxiliary feedforward networks, leading to increased computational complexity and architectural dependencies. This study introduces a standalone INN methodology that eliminates the need for feedforward networks while maintaining high reconstruction accuracy. The approach integrates Principal Component Analysis (PCA) and Partial Least Squares (PLS) for optimized feature space learning, enabling the standalone INN to effectively capture bidirectional mappings between geometric parameters and mechanical properties. Validation using established numerical datasets demonstrates that the standalone INN architecture achieves reconstruction accuracy equal or better than traditional tandem approaches while More >

Displaying 1-10 on page 1 of 296. Per Page