Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (304)
  • Open Access

    ARTICLE

    Experimental Study on Axial Compressive Behavior and Constitutive Model of Restored Mortar Masonry

    Dongyu Teng1,2,*, Hao Tang1,3,*, Peng He1,2, Zhen Hao1,2

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1717-1731, 2025, DOI:10.32604/sdhm.2025.069751 - 17 November 2025

    Abstract In order to study the axial compression characteristics of brick masonry historical buildings, and to better protect and repair traditional mortar-brick masonry historical buildings, axial compression tests were carried out on three kinds of restored mortar (pure mud mortar, pure mortar, and mud mortar) brick masonry with restored mortar brick masonry as the object of study. The damage modes, axial compression chemical indexes (compressive strength and elastic modulus), load-displacement curves and stress-strain curves of the three kinds of restored mortar brick masonry were obtained. The experimental results show that the compressive strength of mud mortar… More >

  • Open Access

    PROCEEDINGS

    Multi-Scale Investigation on the Nonlinear Deformation of Flax Fibre Reinforced Composites Based on the Evolution of Microstructures

    Qian Li*, Jiali Zhou, Yan Li*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.4, pp. 1-1, 2025, DOI:10.32604/icces.2025.012234

    Abstract Plant fibres are emerging as sustainable composite reinforcements. Compared to synthetic fibres, the hierarchical and twisted structure of plant fibres may produce microfibril angle (MFA) reorientation and untwisting time-varying behaviors after loading and consequently decide the mechanical response of plant fibre reinforced composites (PFRCs) in macro-scale. Existing theories, assuming homogeneous fibres, cannot accurately describe the multi-scale coupling nonlinear deformations of PFRCs. Based on this, a multi-scale analysis method on the nonlinear tensile responses of flax fibre reinforced composites (FFRCs) was proposed, focusing on the effect of the evolution of MFA in micro-scale and twist angle… More >

  • Open Access

    PROCEEDINGS

    Simulation Analysis of in-Situ TiC Generation by Laser Cladding and Study on Mechanical Properties of Enhanced Coatings

    Xiaoxiao Li, Xiujiang Shi*, Yusheng Jian, Yaqi Yang, Bailing Guan, Zehong Cai

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.4, pp. 1-1, 2025, DOI:10.32604/icces.2025.011099

    Abstract Based on COMSOL simulation software, the planar Gaussian heat source model was used to simulate and analyze the surface reinforced nickel-based coating on H13 steel, and the optimal process parameters were obtained. Secondly, TiC reinforced nickel base coating was prepared in situ on H13 steel surface by laser cladding technology. The morphology, phase composition, microhardness and friction and wear properties of matrix, single coating and gradient coating were compared by scanning electron microscopy, X-ray diffractometer, microhardness tester and universal friction and wear machine. Finally, the bionic gradient TiC reinforced nickel base coating was prepared on… More >

  • Open Access

    ARTICLE

    Hybrid Taguchi and Machine Learning Framework for Optimizing and Predicting Mechanical Properties of Polyurethane/Nanodiamond Nanocomposites

    Markapudi Bhanu Prasad1, Borhen Louhichi2, Santosh Kumar Sahu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 483-519, 2025, DOI:10.32604/cmes.2025.069395 - 30 October 2025

    Abstract This study investigates the mechanical behavior of polyurethane (PU) nanocomposites reinforced with nanodiamonds (NDs) and proposes an integrated optimization–prediction framework that combines the Taguchi method with machine learning (ML). The Taguchi design of experiments (DOE), based on an L9 orthogonal array, was applied to investigate the influence of composite type (pure PU, 0.1 wt.% ND, 0.5 wt.% ND), temperature (145°C–165°C), screw speed (50–70 rpm), and pressure (40–60 bar). The mechanical tests included tensile, hardness, and modulus measurements, performed under varying process parameters. Results showed that the addition of 0.5 wt.% ND substantially improved PU performance,… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Inverse Design: Exploring Latent Space Information for Geometric Structure Optimization

    Nguyen Dong Phuong1, Nanthakumar Srivilliputtur Subbiah1, Yabin Jin2, Xiaoying Zhuang1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 263-303, 2025, DOI:10.32604/cmes.2025.067100 - 30 October 2025

    Abstract Traditional inverse neural network (INN) approaches for inverse design typically require auxiliary feedforward networks, leading to increased computational complexity and architectural dependencies. This study introduces a standalone INN methodology that eliminates the need for feedforward networks while maintaining high reconstruction accuracy. The approach integrates Principal Component Analysis (PCA) and Partial Least Squares (PLS) for optimized feature space learning, enabling the standalone INN to effectively capture bidirectional mappings between geometric parameters and mechanical properties. Validation using established numerical datasets demonstrates that the standalone INN architecture achieves reconstruction accuracy equal or better than traditional tandem approaches while More >

  • Open Access

    PROCEEDINGS

    Phase Field Crystal Simulation of Mechanical Properties and Grain Boundary Evolution of Complex Concentration Alloys

    Xiaoai Yi, Jia Li*, Qihong Fang*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.4, pp. 1-1, 2025, DOI:10.32604/icces.2025.010725

    Abstract The complex concentration alloys are considered to have excellent mechanical properties due to the combined effects of heterogeneous composition and microstructure. However, it is difficult for existing simulation methods to capture the significant modulation of mechanical properties by the formation and motion of grain boundaries of complex concentration alloys at the microsecond and nanometer scales. To address this, we utilize the phase field crystal model that combines molecular dynamics and traditional phase field advantages to systematically study real-time grain boundary formation and motion in complex concentration alloys [1]. Meanwhile, we investigated the compositional fluctuations of More >

  • Open Access

    PROCEEDINGS

    Uncovering the Mechanisms by Which Hot Isostatic Pressing Improves the Mechanical Properties of LPBF Ti-6Al-4V

    ZiQi Zhao, MingYang Xu, ChaoYang Sun, PeiPei Li*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.3, pp. 1-1, 2025, DOI:10.32604/icces.2025.012382

    Abstract Hot isostatic pressing (HIP) is often utilized to obtain laser powder bed fused (LPBF) Ti-6Al-4V with good mechanical properties. To uncover the underlying mechanisms by which HIP improves the mechanical properties, several mechanisms are considered and examined against experimental data sets available in the literature. The results suggest that HIP improves mechanical properties by both reducing defect sizes below a critical threshold and altering the microstructure surrounding defects. Based on these findings, a pore healing model was developed, and optimized HIP processing parameter range (temperature, pressure, and soaking time) were proposed. Severe plastic deformation driven… More >

  • Open Access

    PROCEEDINGS

    3D Printing of Complex Micro-Macrostructure Composites with Enhanced Mechanical Properties

    Lizhi Guan1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.3, pp. 1-1, 2025, DOI:10.32604/icces.2025.012356

    Abstract Complex hierarchical structure in nature with remarkable performances of such as lightweight, high stiffness and strength, and so on, has inspired researchers designing and fabricating aligned structures for reinforced composites. Conventional techniques like freeze-casting, self-assembly, wet-spinning, shear force, electric, and magnetic field have been demonstrated to achieve excellent reinforced structures. Still, they are limited to microstructure control and small-sized samples. While 3D printing techniques enable to achieve a large diversity of dimensions, multimaterial and multifunctional 3D structures. Particularly, recent 3D printing combined with external force e.g., shear force, magnetic and electrical field has been employed… More >

  • Open Access

    PROCEEDINGS

    Internal Connection Between the Microstructures and the Mechanical Properties in Additive Manufacturing

    Yifei Wang, Zhao Zhang*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.3, pp. 1-1, 2025, DOI:10.32604/icces.2025.011121

    Abstract Additive manufacturing (AM) reveals high anisotropy in mechanical properties due to the thermal accumulation induced microstructures. How to reveal the internal connection between the microstructures and the mechanical properties in additive manufacturing is a challenge. There are many methods to predict the mechanical properties based on the microstructural evolutions in additive manufacturing [1–3]. Here we summarized the main methods for the prediction of the mechanical properties in additive manufacturing, including crystal plasticity finite element method (CPFEM), dislocation dynamics (DD), and molecular dynamics (MD). We systematically examine these primary approaches for mechanical property predictions in AM,… More >

  • Open Access

    ARTICLE

    Enhancing Mechanical Properties of Biobased Polyurethane Composites Using Birch Flour and Diatomite Fillers

    Dmitry S. Konovalov1, Natalia N. Saprykina2, Vjacheslav V. Zuev1,2,*

    Journal of Renewable Materials, Vol.13, No.10, pp. 2043-2058, 2025, DOI:10.32604/jrm.2025.02025-0079 - 22 October 2025

    Abstract In this study, the polyurethanes (PU) were synthesized from 4,4-methylene diphenyl diisocyanate and biobased ethoxylated castor oil or one mixture of ethoxylated and neat castor oil by direct mixing method. Utilization of ethoxylated castor oil increases the tensile strength of PU up to 2.75 times (from 3.2 to 8.8 MPa), compared to PU based on neat castor oil. The PU composites filled with birch flour, diatomite, and their mixture were prepared using a homemade dissolver with a cutter-shaped attachment at a speed of 1500 r min−1. The tensile strength of PU composites filled with birch flour… More > Graphic Abstract

    Enhancing Mechanical Properties of Biobased Polyurethane Composites Using Birch Flour and Diatomite Fillers

Displaying 11-20 on page 2 of 304. Per Page