Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (290)
  • Open Access

    ARTICLE

    Prediction and Validation of Mechanical Properties of Areca catechu/Tamarindus indica Fruit Fiber with Nano Coconut Shell Powder Reinforced Hybrid Composites

    Jeyapaul Angel Ida Chellam1, Bright Brailson Mansingh2, Daniel Stalin Alex3, Joseph Selvi Binoj4,*

    Journal of Polymer Materials, Vol.42, No.3, pp. 773-794, 2025, DOI:10.32604/jpm.2025.069295 - 30 September 2025

    Abstract Machine learning models can predict material properties quickly and accurately at a low computational cost. This study generated novel hybridized nanocomposites with unsaturated polyester resin as the matrix and Areca fruit husk fiber (AFHF), tamarind fruit fiber (TFF), and nano-sized coconut shell powder (NCSP). It is challenging to determine the optimal proportion of raw materials in this composite to achieve maximum mechanical properties. This task was accomplished with the help of ML techniques in this study. The tensile strength of the hybridized nanocomposite was increased by 134.06% compared to the neat unsaturated polyester resin at… More >

  • Open Access

    ARTICLE

    Bagasse Fibers Surface Heat Treatment and Its Effect on Mechanical Properties of Starch/Poly (Vinyl Alcohol) Composites

    Xiangyang Zhou1, Yashi Wang1, Min Xiao1,*, Jiajun Liu1,2, Jiahao Wen1, Haodong Shen3, Hucan Hong1

    Journal of Polymer Materials, Vol.42, No.3, pp. 795-810, 2025, DOI:10.32604/jpm.2025.068200 - 30 September 2025

    Abstract Sugarcane bagasse (SCB) is a promising natural fiber for bio-based composites, but its high moisture absorption and poor interfacial adhesion with polymer matrices limit mechanical performance. While chemical treatments have been extensively explored, limited research has addressed how thermal treatment alone alters the surface properties and reinforcing behavior of SCB fibers. This study aims to fill that gap by investigating the effects of heat treatment on SCB fiber structure and its performance in starch/poly (vinyl alcohol) (PVA) composites. Characterization techniques including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning… More >

  • Open Access

    PROCEEDINGS

    Mechanics Differences of Laminations and Crack Propagation Mechanism of Continental Shale

    Yongting Duan*Chengcheng Zhu

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.010514

    Abstract Clarify the mechanical properties of different laminations and the fracture mechanism of continental shale under in-situ stress can provide theoretical basis for more comprehensive evaluation of the fracability of continental shale oil reservoir. The Chang 72 continental shale was used to investigate the mechanical properties of laminations and the effect of natural structure on the crack propagation of the shale. The X-ray diffraction (XRD) and thin section tests show that the laminations contain two types: bright sandy lamination with void structure and dark muddy lamination with layer structure. The real-time Computed Tomography (CT) uniaxial compression… More >

  • Open Access

    ARTICLE

    Influence of Intermolecular Forces and Spatial Effects on the Mechanical Properties of Silicone Sealant by Molecular Dynamics Simulation

    Wen Qi1, Yu-Fei Du1, Bo-Han Chen2, Gui-Lei An1,3,*, Chun Lu4,*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2763-2780, 2025, DOI:10.32604/cmc.2025.069505 - 23 September 2025

    Abstract In the production process of silicone sealant, mineral oil is used to replace methyl silicone oil plasticizer in silicone sealant to reduce costs and increase efficiency. However, the silicone sealant content in mineral oil is prone to premature aging, which significantly reduces the mechanical properties of the silicone sealant and severely affects its service life. At the same time, there are few reports on the simulation research of the performance of silicone sealant. In this study, three mixed system models of crosslinking silicone sealant/plasticizer are constructed by the molecular dynamics simulation method, and the effect… More >

  • Open Access

    ARTICLE

    Effect of D-Lactide Content and Molecular Weight of PLA on Interfacial Compatibilization with PBAT and the Resultant Morphological, Thermal, and Mechanical Properties

    Aylin Altınbay1,2, Ceren Özsaltık2, Mohammadreza Nofar2,*

    Journal of Renewable Materials, Vol.13, No.8, pp. 1605-1621, 2025, DOI:10.32604/jrm.2025.02025-0048 - 22 August 2025

    Abstract Interfacial compatibilization is essential to generate compatible blend structures with synergistically enhanced properties. However, the effect of molecular structure on the reactivity of compatibilizers is not properly known. This study investigates the compatibilization effect of multifunctional, epoxy-based Joncryl chain extender in blends of polylactide (PLA) and polybutylene adipate-co-terephthalate (PBAT) using PLA with varying D-lactide contents and molecular weights. These PLAs were high molecular weight amorphous PLA (aPLA) with D-content of 12 mol% and semi-crystalline PLA (scPLA) grades with D-contents below 1.5 mol% at both high (h) and low (l) molecular weights. The reactivity of Joncryl… More >

  • Open Access

    REVIEW

    A Comprehensive Review on Bridging the Research Gap in AI-Driven Material Simulation for FRP Composites

    Alin Diniță1, Cosmina-Mihaela Rosca2, Maria Tănase1,*, Adrian Stancu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 147-199, 2025, DOI:10.32604/cmes.2025.066276 - 31 July 2025

    Abstract Fiber-reinforced polymer (FRP) composites are renowned for their high mechanical strength, durability, and lightweight properties, making them integral to civil engineering, aerospace, and automotive manufacturing. Traditionally, the simulation and optimization of FRP materials have relied on finite element (FE) methods, which, while effective, often fall short in capturing the intricate behaviors of these composites under diverse conditions. Concrete examples in this regard involve modeling interfacial cracks, delaminations, or environmental effects that involve nonlinear phenomena. These degradation mechanisms exceed the capacity of classical FE models, as they are not detailed to the required level of detail.… More > Graphic Abstract

    A Comprehensive Review on Bridging the Research Gap in AI-Driven Material Simulation for FRP Composites

  • Open Access

    ARTICLE

    Effect of Design Parameters on the Properties of PLA Biocomposites Fabricated via Fused Filament Deposition

    Martha L. Sánchez1,*, Luz Y. Morales1, Gil Capote2

    Journal of Renewable Materials, Vol.13, No.7, pp. 1413-1437, 2025, DOI:10.32604/jrm.2025.02025-0028 - 22 July 2025

    Abstract The use of additive manufacturing techniques in the development of unconventional materials can help reduce the environmental impact of traditional construction materials. In this paper, the properties of a 3D-printed biocomposite were evaluated. Biofilaments obtained by mixing pulverized bamboo fibers with polylactic acid (PLA) resin were extruded during the manufacturing process. To assess the effect of incorporating plant fibers, an analysis was conducted on the morphology, elemental chemical composition, crystallinity index, principal functional groups, thermal stability, surface roughness, microhardness, density, tensile strength, elastic modulus, and strain percentage of reinforced samples. The results were compared with… More >

  • Open Access

    ARTICLE

    Synergistic Effect of Silicone Macromolecular Charring Agent and Ammonium Polyphosphate on Improving Flame Retardancy and Mechanical Properties of Ethylene-Butyl Acrylate Copolymer Composites

    Xuan Huo1, Bingchen Wu1, Yuanmeng Lou1, Junlin Zhu1, Cui Li1, Lili Ma1, Ye-Tang Pan2, Chuncheng Hao1,*, Xin Wen1,*

    Journal of Polymer Materials, Vol.42, No.2, pp. 517-530, 2025, DOI:10.32604/jpm.2025.065320 - 14 July 2025

    Abstract Power cables are important pieces of equipment for energy transmission, but achieving a good balance between flame retardancy and mechanical properties of cable sheaths remains a challenge. In this work, a novel intumescent flame retardant (IFR) system containing silicone-containing macromolecular charring agent (Si-MCA) and ammonium polyphosphate (APP) was designed to synergistically improve the flame retardancy and mechanical properties of ethylene-butyl acrylate copolymer (EBA) composites. The optimal mass ratio of APP/Si-MCA was 3/1 in EBA composites (EBA/APP-Si-31), corresponding to the best flame retardancy with 31.2% of limited oxygen index (LOI), V-0 rating in UL-94 vertical burning More > Graphic Abstract

    Synergistic Effect of Silicone Macromolecular Charring Agent and Ammonium Polyphosphate on Improving Flame Retardancy and Mechanical Properties of Ethylene-Butyl Acrylate Copolymer Composites

  • Open Access

    ARTICLE

    Mechanical Properties and Fracture Behavior of 3D Printed Continuous Glass Fiber Reinforced PEEK Composite

    Haoliang Ding1,2, Han Yu2, Yunfeng Zhao2, Chunze Yan1, Yusheng Shi1,*, Binling Chen3,*

    Journal of Polymer Materials, Vol.42, No.2, pp. 497-516, 2025, DOI:10.32604/jpm.2025.063324 - 14 July 2025

    Abstract Polyether ether ketone (PEEK)-based continuous glass fiber reinforced thermoplastic composite offers advantages such as high strength, electrical insulation, and heat insulation. Parts manufactured using this composite and 3D printing have promising applications in aerospace, automobile, rail transit, etc. In this paper, a high-temperature melt impregnation method was used to successfully prepare the 3D printing prepreg filaments of the aforementioned composite. In the FDM 3D printing equipment, a nozzle of high thermal conductivity and wear-resistant copper alloy and a PEEK-based carbon fiber thermoplastic composite build plate with uniform temperature control were innovatively introduced to effectively improve… More >

  • Open Access

    ARTICLE

    Sensitive Analysis on the Compressive and Flexural Strength of Carbon Nanotube-Reinforced Cement Composites Using Machine Learning

    Ahed Habib1,*, Mohamed Maalej2, Samir Dirar3, M. Talha Junaid2, Salah Altoubat2

    Structural Durability & Health Monitoring, Vol.19, No.4, pp. 789-817, 2025, DOI:10.32604/sdhm.2025.064882 - 30 June 2025

    Abstract Carbon nanotube-reinforced cement composites have gained significant attention due to their enhanced mechanical properties, particularly in compressive and flexural strength. Despite extensive research, the influence of various parameters on these properties remains inadequately understood, primarily due to the complex interactions within the composites. This study addresses this gap by employing machine learning techniques to conduct a sensitivity analysis on the compressive and flexural strength of carbon nanotube-reinforced cement composites. It systematically evaluates nine data-preprocessing techniques and benchmarks eleven machine-learning algorithms to reveal trade-offs between predictive accuracy and computational complexity, which has not previously been explored… More >

Displaying 11-20 on page 2 of 290. Per Page