Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    Biochemical and Physiological Responses of Arabidopsis thaliana Leaves to Moderate Mechanical Stimulation

    Iva Šutevski1,#, Klara Krmpotić1,#, Sandra Vitko1, Nataša Bauer1, Eva Fancev2, Mario Cifrek2, Željka Vidaković-Cifrek1,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.3, pp. 901-920, 2023, DOI:10.32604/phyton.2023.025165

    Abstract Mechanical stimulation of plants can be caused by various abiotic and biotic environmental factors. Apart from the negative consequences, it can also cause positive changes, such as acclimatization of plants to stress conditions. Therefore, it is necessary to study the physiological and biochemical mechanisms underlying the response of plants to mechanical stimulation. Our aim was to evaluate the response of model plant Arabidopsis thaliana to a moderate force of 5 N (newton) for 20 s, which could be compared with the pressure caused by animal movement and weather conditions such as heavy rain. Mechanically stimulated leaves were sampled 1 h… More >

  • Open Access

    ABSTRACT

    The Rate of Fluid Shear Stress is a Potent Regulator for Lineage Commitment of Mesenchymal Stem Cells Through Modulating [Ca2+]i, F-actin and Lamin A

    Danyang Yue1, Yijuan Fan1, Juan Lu1, Mengxue Zhang1, Jin Zhou1, Yuying Bai1, Jun Pan1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 144-144, 2019, DOI:10.32604/mcb.2019.07084

    Abstract Mesenchymal Stem Cells (MSCs) are recruited to the musculoskeletal system following trauma [1] or chemicals stimulation [2]. The regulation of their differentiation into either bone or cartilage cells is a key question. The fluid shear stress (FSS) is of pivotal importance to the development, function and even the repair of all tissues in the musculoskeletal system [3]. We previously found that MSCs are sensitive enough to distinguish a slight change of FSS stimulation during their differentiation commitment to bone or cartilage cells, and the internal mechanisms. In detail, MSCs were exposed to laminar FSS linearly increased from 0 to 10… More >

  • Open Access

    ABSTRACT

    Endothelial Tight Junction Protein ZO-1 Response to Multiple-Mechanical Stimulations After Stent Implamtation

    Yang Wang1, Shuang Ge1, Junyang Huang1, Ruolin Du1, Tieying Yin1, Guixue Wang1,*, Yazhou Wang1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 140-141, 2019, DOI:10.32604/mcb.2019.07300

    Abstract Zonula occludens-1 (ZO-1) is a peripheral membrane protein belongs to the family of zona occludens proteins and plays an important role as a scaffold protein which cross-links and anchors tight junction (TJ) strand proteins, within the lipid bilayer, to the actin cytoskeleton[1-2]. Stent implantation is the most effective method in the treatment of cardiovascular disease which always destroy junctions of endothelial cells, the functions of the tight junction were also affected. However, the role of ZO-1 before and after stent implantation has not been fully understood. In this study, the expression of ZO-1 were analyzed by qPCR, western blot and… More >

  • Open Access

    ABSTRACT

    Expression of Endothelial Tight Junction Protein Occludin under Mechanical Factors after Stent Implantation

    Junyang Huang1, Shuang Ge1, Yang Wang1, Ruolin Du1, Yazhou Wang1, Tieying Yin1, Guixue Wang1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 138-139, 2019, DOI:10.32604/mcb.2019.07305

    Abstract Tight junctions are the most apical intercellular junctions of the lateral membrane in endothelial cells, regulating the paracellular material and energy exchange and maintain plasma membrane polarity. Occludin protein is one of the important proteins involved in endothelial tight junctions, and also closely related to the occurrence of atherosclerosis. Therefore, the study of occludin is valuable [1]. With the implantation of coronary stents, the integrity of the vascular endothelium is damaged and the local mechanical environment at the stent segment was changed [2]. The present study tried to explore the impact of mechanical stimulation after stent implantation on the expression… More >

  • Open Access

    ABSTRACT

    Mechano Growth Factor (MGF) Expression and Response to Multiple-Mechanical Stimulation after Biodegradable Stent Implantation

    Shuang Ge1, Ruolin Du1, Yuhua Huang1, Guixue Wang1, Yazhou Wang1, Tieying Yin1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 136-137, 2019, DOI:10.32604/mcb.2019.07317

    Abstract Stent implantation is the most effective method in the treatment of cardiovascular disease which always destroy the integrity of the vascular endothelium and the local mechanical environment at the stent segment was changed, especially the biodegradable stents [1]. In this study, 3D printed biodegradable poly (L-lactic acid) stents were implanted into SD rat abdominal aorta and the endothelialization, intimal hyperplasia, and MGF after stent implantation were studied. Besides, based on the MGF we explored the effects of mechanical stimulation on MGF express in vascular endothelial cells and smooth muscle cells, and also the effects of MGF with different concentrations on… More >

  • Open Access

    ARTICLE

    Chondrocytes and Bone Marrow Staromal Cells Exhibit Differential Responses to Mechanical Stimulation and Cytokine Challenge

    J. M. Taboas1, R. S. Tuan1

    Molecular & Cellular Biomechanics, Vol.3, No.4, pp. 189-191, 2006, DOI:10.32604/mcb.2006.003.189

    Abstract This article has no abstract. More >

  • Open Access

    ABSTRACT

    Calcium Response and Transfer in Bone Cell Network with or without Gap Junctions under Mechanical Stimulation

    Bo Huo, Man Hu, Ping Li

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.4, pp. 103-104, 2011, DOI:10.3970/icces.2011.018.103

    Abstract It has been widely accepted that movement of human body causes the fluid flow through pores or channels inside bone and subsequently on osteoblasts on the surface of trabeculae and osteocytes inside lacunae. The mechanism of calcium response in a bone cell and calcium transfer between bone cells is critical in understanding the communication between bone cells and calcium deposition on bone matrix. Our previous works have demonstrated that when micropatterned osteoblastic cell network with gap junctions was exposed to fluid flow, extracellular ATP diffusion following the activation of calcium response in neighboring cells plays more important roles in calcium… More >

  • Open Access

    ARTICLE

    Comparing the Effect of Uniaxial Cyclic Mechanical Stimulation and Chemical Factors on Myogenin and Myh2 Expression in Mouse Embryonic and Bone Marrow Derived Mesenchymal Stem Cells

    Norizadeh Abbariki Tannaz*,†, Shokrgozar Mohammad Ali†,‡, Haghighipour Nooshin*,§, Aghdami Nasser, Mahdian RezakII, Amanzadeh Amir*, Jazayeri Maryam*,†

    Molecular & Cellular Biomechanics, Vol.11, No.1, pp. 19-37, 2014, DOI:10.3970/mcb.2014.011.019

    Abstract Background: Environmental factors affect stem cell differentiation. In addition to chemical factors, mechanical signals have been suggested to enhance myogenic differentiation of stem cells. Therefore, this study was undertaken to illustrate and compare the effect of chemical and mechanical stimuli on Myogenin (MyoG) and Myosin heavy chani 2 (Myh2) expression of mouse bone marrowderived mesenchymal stem cells (BMSCs) and embryonic stem cells (ESCs). Methods: After isolation and expansion of BMSCs and generation of embryoid bodies and spontaneous differentiation of ESCs, cells were examined in 4 groups: (1) control group: untreated cells; (2) chemical group: cells incubated in myogenic medium (5-azacythidine… More >

Displaying 1-10 on page 1 of 8. Per Page