Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (195)
  • Open Access

    ARTICLE

    Abnormal State Detection in Lithium-ion Battery Using Dynamic Frequency Memory and Correlation Attention LSTM Autoencoder

    Haoyi Zhong, Yongjiang Zhao, Chang Gyoon Lim*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1757-1781, 2024, DOI:10.32604/cmes.2024.049208

    Abstract This paper addresses the challenge of identifying abnormal states in Lithium-ion Battery (LiB) time series data. As the energy sector increasingly focuses on integrating distributed energy resources, Virtual Power Plants (VPP) have become a vital new framework for energy management. LiBs are key in this context, owing to their high-efficiency energy storage capabilities essential for VPP operations. However, LiBs are prone to various abnormal states like overcharging, over-discharging, and internal short circuits, which impede power transmission efficiency. Traditional methods for detecting such abnormalities in LiB are too broad and lack precision for the dynamic and irregular nature of LiB data.… More >

  • Open Access

    ARTICLE

    Fusion of Spiral Convolution-LSTM for Intrusion Detection Modeling

    Fei Wang, Zhen Dong*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2315-2329, 2024, DOI:10.32604/cmc.2024.048443

    Abstract Aiming at the problems of low accuracy and slow convergence speed of current intrusion detection models, SpiralConvolution is combined with Long Short-Term Memory Network to construct a new intrusion detection model. The dataset is first preprocessed using solo thermal encoding and normalization functions. Then the spiral convolution-Long Short-Term Memory Network model is constructed, which consists of spiral convolution, a two-layer long short-term memory network, and a classifier. It is shown through experiments that the model is characterized by high accuracy, small model computation, and fast convergence speed relative to previous deep learning models. The model uses a new neural network… More >

  • Open Access

    ARTICLE

    Research on Performance Optimization of Spark Distributed Computing Platform

    Qinlu He1,*, Fan Zhang1, Genqing Bian1, Weiqi Zhang1, Zhen Li2

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2833-2850, 2024, DOI:10.32604/cmc.2024.046807

    Abstract Spark, a distributed computing platform, has rapidly developed in the field of big data. Its in-memory computing feature reduces disk read overhead and shortens data processing time, making it have broad application prospects in large-scale computing applications such as machine learning and image processing. However, the performance of the Spark platform still needs to be improved. When a large number of tasks are processed simultaneously, Spark’s cache replacement mechanism cannot identify high-value data partitions, resulting in memory resources not being fully utilized and affecting the performance of the Spark platform. To address the problem that Spark’s default cache replacement algorithm… More >

  • Open Access

    ARTICLE

    Deep-Ensemble Learning Method for Solar Resource Assessment of Complex Terrain Landscapes

    Lifeng Li1, Zaimin Yang1, Xiongping Yang1, Jiaming Li2, Qianyufan Zhou3,*, Ping Yang3

    Energy Engineering, Vol.121, No.5, pp. 1329-1346, 2024, DOI:10.32604/ee.2023.046447

    Abstract As the global demand for renewable energy grows, solar energy is gaining attention as a clean, sustainable energy source. Accurate assessment of solar energy resources is crucial for the siting and design of photovoltaic power plants. This study proposes an integrated deep learning-based photovoltaic resource assessment method. Ensemble learning and deep learning methods are fused for photovoltaic resource assessment for the first time. The proposed method combines the random forest, gated recurrent unit, and long short-term memory to effectively improve the accuracy and reliability of photovoltaic resource assessment. The proposed method has strong adaptability and high accuracy even in the… More >

  • Open Access

    ARTICLE

    Microwave–Induced Thermo-Responsive Shape Memory Polyurethane/MWCNTs Composites and Improved their Shape Memory and Mechanical Properties

    KRISHAN KUMAR PATEL, RAJESH PUROHIT

    Journal of Polymer Materials, Vol.36, No.1, pp. 23-37, 2019, DOI:10.32381/JPM.2019.36.01.3

    Abstract Microwave (MV)-induced thermo-responsive shape memory thermoplastic polyurethane (SMTPU)/ MWCNT composites were prepared in micro-compounder. Composites containing different amount of multiwall Carbon nanotube (MWCNT) varying from 0 to 1.5 phr in SMTPU matrix were prepared. Maximum stretching strength, recovery force and tensile strength for 1.5 CNTPU (1.5 phr MWCNT in SMTPU matrix) was increased by 120%, 100% and 24% respectively as compared to SMTPU. MV-induced shape memory is a novel approach for fast, clean and remote heating during operation. MWCNT is strong absorber of microwave irradiation so that SMTPU/ MWCNTs nanocomposites successfully triggered by microwave. More >

  • Open Access

    ARTICLE

    4-dimensional Printing of Multi-material, Multi-shape Changing Shape Memory Polymer Composites

    MANIKANDAN.N1,*, RAJESH.P.K1

    Journal of Polymer Materials, Vol.38, No.3-4, pp. 327-336, 2021, DOI:10.32381/JPM.2021.38.3-4.12

    Abstract In this research, a new method to fabricate multi-material, multi-shape changing polymer composites is proposed. The method aims to reduce the number of thermomechanical programming steps involved in achieving shape change in a shape memory polymer (SMP) composite structure by including the programming steps directly into the printing process. After a single step of mechanical deformation and thermal loading, the SMP fibers can be activated sequentially to control the shape change. Composite strip samples were fabricated using a Stratasys Objet 260 multimaterial printer. Two polymer inks VeroPureWhite and Agilus30 were used as primary materials. The composite strip consists of fiber… More >

  • Open Access

    ARTICLE

    The Influence of Air Pollution Concentrations on Solar Irradiance Forecasting Using CNN-LSTM-mRMR Feature Extraction

    Ramiz Gorkem Birdal*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4015-4028, 2024, DOI:10.32604/cmc.2024.048324

    Abstract Maintaining a steady power supply requires accurate forecasting of solar irradiance, since clean energy resources do not provide steady power. The existing forecasting studies have examined the limited effects of weather conditions on solar radiation such as temperature and precipitation utilizing convolutional neural network (CNN), but no comprehensive study has been conducted on concentrations of air pollutants along with weather conditions. This paper proposes a hybrid approach based on deep learning, expanding the feature set by adding new air pollution concentrations, and ranking these features to select and reduce their size to improve efficiency. In order to improve the accuracy… More >

  • Open Access

    ARTICLE

    An Enhanced Ensemble-Based Long Short-Term Memory Approach for Traffic Volume Prediction

    Duy Quang Tran1, Huy Q. Tran2,*, Minh Van Nguyen3

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3585-3602, 2024, DOI:10.32604/cmc.2024.047760

    Abstract With the advancement of artificial intelligence, traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality. Traffic volume is an influential parameter for planning and operating traffic structures. This study proposed an improved ensemble-based deep learning method to solve traffic volume prediction problems. A set of optimal hyperparameters is also applied for the suggested approach to improve the performance of the learning process. The fusion of these methodologies aims to harness ensemble empirical mode decomposition’s capacity to discern complex traffic patterns and long short-term memory’s proficiency in learning temporal relationships. Firstly, a dataset for… More >

  • Open Access

    ARTICLE

    A Novel Eccentric Intrusion Detection Model Based on Recurrent Neural Networks with Leveraging LSTM

    Navaneetha Krishnan Muthunambu1, Senthil Prabakaran2, Balasubramanian Prabhu Kavin3, Kishore Senthil Siruvangur4, Kavitha Chinnadurai1, Jehad Ali5,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3089-3127, 2024, DOI:10.32604/cmc.2023.043172

    Abstract The extensive utilization of the Internet in everyday life can be attributed to the substantial accessibility of online services and the growing significance of the data transmitted via the Internet. Regrettably, this development has expanded the potential targets that hackers might exploit. Without adequate safeguards, data transmitted on the internet is significantly more susceptible to unauthorized access, theft, or alteration. The identification of unauthorised access attempts is a critical component of cybersecurity as it aids in the detection and prevention of malicious attacks. This research paper introduces a novel intrusion detection framework that utilizes Recurrent Neural Networks (RNN) integrated with… More >

  • Open Access

    ARTICLE

    Analysis and Modeling of Time Output Characteristics for Distributed Photovoltaic and Energy Storage

    Kaicheng Liu1,3,*, Chen Liang2, Xiaoyang Dong2, Liping Liu1

    Energy Engineering, Vol.121, No.4, pp. 933-949, 2024, DOI:10.32604/ee.2023.043658

    Abstract Due to the unpredictable output characteristics of distributed photovoltaics, their integration into the grid can lead to voltage fluctuations within the regional power grid. Therefore, the development of spatial-temporal coordination and optimization control methods for distributed photovoltaics and energy storage systems is of utmost importance in various scenarios. This paper approaches the issue from the perspective of spatiotemporal forecasting of distributed photovoltaic (PV) generation and proposes a Temporal Convolutional-Long Short-Term Memory prediction model that combines Temporal Convolutional Networks (TCN) and Long Short-Term Memory (LSTM). To begin with, an analysis of the spatiotemporal distribution patterns of PV generation is conducted, and… More >

Displaying 1-10 on page 1 of 195. Per Page