Yuyang Liu1,2,*, Wensheng Zhou1,2, Zhijie Wei1,2, Engao Tang1,2, Chenyang Shi3, Qirui Zhang4,*, Zifeng Chen4
Energy Engineering, Vol.122, No.10, pp. 4245-4260, 2025, DOI:10.32604/ee.2025.066167
- 30 September 2025
Abstract After a long period of water flooding development, the oilfield has entered the middle and high water cut stage. The physical properties of reservoirs are changed by water erosion, which directly impacts reservoir development. Conventional numerical reservoir simulation methodologies typically employ static assumptions for model construction, presuming invariant reservoir geological parameters throughout the development process while neglecting the reservoir’s temporal evolution characteristics. Although such simplifications reduce computational complexity, they introduce substantial descriptive inaccuracies. Therefore, this paper proposes a meshless numerical simulation method for reservoirs that considers time-varying characteristics. This method avoids the meshing in traditional… More >