Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (152)
  • Open Access

    ARTICLE

    The Generalized Interpolation Material Point Method

    S. G. Bardenhagen1,2, E. M. Kober3

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.6, pp. 477-496, 2004, DOI:10.3970/cmes.2004.005.477

    Abstract The Material Point Method (MPM) discrete solution procedure for computational solid mechanics is generalized using a variational form and a Petrov–Galerkin discretization scheme, resulting in a family of methods named the Generalized Interpolation Material Point(GIMP) methods. The generalizationpermits identification with aspects of other point or node based discrete solution techniques which do not use a body–fixed grid, i.e. the “meshless methods”. Similarities are noted and some practical advantages relative to some of these methods are identified. Examples are used to demonstrate and explain numerical artifact noise which can be expected inMPM calculations. Thisnoiseresultsin non-physical local More >

  • Open Access

    ARTICLE

    Meshless Local Petrov-Galerkin Method in Anisotropic Elasticity

    J. Sladek1, V. Sladek1, S.N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.5, pp. 477-490, 2004, DOI:10.3970/cmes.2004.006.477

    Abstract A meshless method based on the local Petrov-Galerkin approach is proposed for solution of static and elastodynamic problems in a homogeneous anisotropic medium. The Heaviside step function is used as the test functions in the local weak form. It is leading to derive local boundary integral equations (LBIEs). For transient elastodynamic problems the Laplace transfor technique is applied and the LBIEs are given in the Laplace transform domain. The analyzed domain is covered by small subdomains with a simple geometry such as circles in 2-d problems. The final form of local integral equations has a More >

  • Open Access

    ARTICLE

    Radial Basis Function and Genetic Algorithms for Parameter Identification to Some Groundwater Flow Problems

    B. Amaziane1, A. Naji2, D. Ouazar3

    CMC-Computers, Materials & Continua, Vol.1, No.2, pp. 117-128, 2004, DOI:10.3970/cmc.2004.001.117

    Abstract In this paper, a meshless method based on Radial Basis Functions (RBF) is coupled with genetic algorithms for parameter identification to some selected groundwater flow applications. The treated examples are generated by the diffusion equation with some specific boundary conditions describing the groundwater fluctuation in a leaky confined aquifer system near open tidal water. To select the best radial function interpolation and show the powerful of the method in comparison to domain based discretization methods, Multiquadric (MQ), Thin-Plate Spline (TPS) and Conical type functions are investigated and compared to finite difference results or analytical one. More >

  • Open Access

    ARTICLE

    Meshless Local Petrov-Galerkin Method for Heat Conduction Problem in an Anisotropic Medium

    J. Sladek1, V. Sladek1, S.N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.3, pp. 309-318, 2004, DOI:10.3970/cmes.2004.006.309

    Abstract Meshless methods based on the local Petrov-Galerkin approach are proposed for solution of steady and transient heat conduction problem in a continuously nonhomogeneous anisotropic medium. Fundamental solution of the governing partial differential equations and the Heaviside step function are used as the test functions in the local weak form. It is leading to derive local boundary integral equations which are given in the Laplace transform domain. The analyzed domain is covered by small subdomains with a simple geometry. To eliminate the number of unknowns on artificial boundaries of subdomains the modified fundamental solution and/or the More >

  • Open Access

    ARTICLE

    A Meshless Method for the Laplace and Biharmonic Equations Subjected to Noisy Boundary Data

    B. Jin1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.3, pp. 253-262, 2004, DOI:10.3970/cmes.2004.006.253

    Abstract In this paper, we propose a new numerical scheme for the solution of the Laplace and biharmonic equations subjected to noisy boundary data. The equations are discretized by the method of fundamental solutions. Since the resulting matrix equation is highly ill-conditioned, a regularized solution is obtained using the truncated singular value decomposition, with the regularization parameter given by the L-curve method. Numerical experiments show that the method is stable with respect to the noise in the data, highly accurate and computationally very efficient. More >

  • Open Access

    ARTICLE

    Numerical Computation of Discrete Differential Operators on Non-Uniform Grids

    N. Sukumar1, J. E. Bolander1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.6, pp. 691-706, 2003, DOI:10.3970/cmes.2003.004.691

    Abstract In this paper, we explore the numerical approximation of discrete differential operators on non-uniform grids. The Voronoi cell and the notion of natural neighbors are used to approximate the Laplacian and the gradient operator on irregular grids. The underlying weight measure used in the numerical computations is the {\em Laplace weight function}, which has been previously adopted in meshless Galerkin methods. We develop a difference approximation for the diffusion operator on irregular grids, and present numerical solutions for the Poisson equation. On regular grids, the discrete Laplacian is shown to reduce to the classical finite More >

  • Open Access

    ARTICLE

    A MLPG (LBIE) method for solving frequency domain elastic problems

    E. J. Sellountos1, D. Polyzos2

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.6, pp. 619-636, 2003, DOI:10.3970/cmes.2003.004.619

    Abstract A new meshless local Petrov-Galerkin (MLPG) method for solving two dimensional frequency domain elastodynamic problems is proposed. Since the method utilizes, in its weak formulation, either the elastostatic or the frequency domain elastodynamic fundamental solution as test function, it is equivalent to the local boundary integral equation (LBIE) method. Nodal points spread over the analyzed domain are considered and the moving least squares (MLS) interpolation scheme for the approximation of the interior and boundary variables is employed. Two integral equations suitable for the integral representation of the displacement fields in the local sub- domains are… More >

  • Open Access

    ARTICLE

    Application of Meshless Local Petrov-Galerkin (MLPG) to Problems with Singularities, and Material Discontinuities, in 3-D Elasticity

    Q. Li1, S. Shen1, Z. D. Han1, S. N. Atluri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.5, pp. 571-586, 2003, DOI:10.3970/cmes.2003.004.571

    Abstract In this paper, a truly meshless method, the Meshless Local Petrov-Galerkin (MLPG) Method, is developed for three-dimensional elasto-statics. The two simplest members of MLPG family of methods, the MLPG type 5 and MLPG type 2, are combined, in order to reduce the computational requirements and to obtain high efficiency. The MLPG5 method is applied at the nodes inside the 3-D domain, so that any domain integration is eliminated altogether, if no body forces are involved. The MLPG 2 method is applied at the nodes that are on the boundaries, and on the interfaces of material More >

  • Open Access

    ARTICLE

    A Meshless Local Petrov-Galerkin (MLPG) Formulation for Static and Free Vibration Analyses of Thin Plates

    Y. T. Gu, G. R. Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.2, No.4, pp. 463-476, 2001, DOI:10.3970/cmes.2001.002.463

    Abstract A meshless method for the analysis of Kirchhoff plates based on the Meshless Local Petrov-Galerkin (MLPG) concept is presented. A MLPG formulation is developed for static and free vibration analyses of thin plates. Local weak form is derived using the weighted residual method in local supported domains from the 4th order partial differential equation of Kirchhoff plates. The integration of the local weak form is performed in a regular-shaped local domain. The Moving Least Squares (MLS) approximation is used to constructed shape functions. The satisfaction of the high continuity requirements is easily met by MLS More >

  • Open Access

    ARTICLE

    On the Equivalence Between Least-Squares and Kernel Approximations in Meshless Methods

    Xiaozhong Jin1, Gang Li2, N. R. Aluru3

    CMES-Computer Modeling in Engineering & Sciences, Vol.2, No.4, pp. 447-462, 2001, DOI:10.3970/cmes.2001.002.447

    Abstract Meshless methods using least-squares approximations and kernel approximations are based on non-shifted and shifted polynomial basis, respectively. We show that, mathematically, the shifted and non-shifted polynomial basis give rise to identical interpolation functions when the nodal volumes are set to unity in kernel approximations. This result indicates that mathematically the least-squares and kernel approximations are equivalent. However, for large point distributions or for higher-order polynomial basis the numerical errors with a non-shifted approach grow quickly compared to a shifted approach, resulting in violation of consistency conditions. Hence, a shifted polynomial basis is better suited from More >

Displaying 141-150 on page 15 of 152. Per Page