Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (155)
  • Open Access

    ARTICLE

    A Meshless IRBFN-based Method for Transient Problems

    L. Mai-Cao1, T. Tran-Cong2

    CMES-Computer Modeling in Engineering & Sciences, Vol.7, No.2, pp. 149-172, 2005, DOI:10.3970/cmes.2005.007.149

    Abstract The Indirect Radial Basis Function Network (IRBFN) method has been reported to be a highly accurate tool for approximating multivariate functions and solving elliptic partial differential equations (PDEs). The present method is a truly meshless method as defined in [\citet *{Atluri_Shen_02a}]. A recent development of the method for solving transient problems is presented in this paper. Two numerical schemes combining the IRBFN method with different time integration techniques based on either fully or semi-discrete framework are proposed. The two schemes are implemented making use of Hardy's multiquadrics (MQ) and Duchon's thin plate splines (TPS). Some More >

  • Open Access

    ARTICLE

    A new Singular/Hypersingular MLPG (LBIE) method for 2D elastostatics

    E. J. Sellountos1, V. Vavourakis2, D. Polyzos3

    CMES-Computer Modeling in Engineering & Sciences, Vol.7, No.1, pp. 35-48, 2005, DOI:10.3970/cmes.2005.007.035

    Abstract A new meshless local Petrov-Galerkin (MLPG) type method based on local boundary integral equation (LBIE) considerations is proposed for the solution of elastostatic problems. It is called singular/hypersingular MLPG (LBIE) method since the representation of the displacement field at the internal points of the considered structure is accomplished with the aid of the displacement local boundary integral equation, while for the boundary nodes both the displacement and the corresponding traction local boundary integral equations are employed. Nodal points spread over the analyzed domain are considered and the moving least squares (MLS) interpolation scheme for the… More >

  • Open Access

    ARTICLE

    Vibrations of Cracked Euler-Bernoulli Beams using Meshless Local Petrov-Galerkin (MLPG) Method

    U. Andreaus1,3, R.C. Batra2, M. Porfiri2, 3

    CMES-Computer Modeling in Engineering & Sciences, Vol.9, No.2, pp. 111-132, 2005, DOI:10.3970/cmes.2005.009.111

    Abstract Structural health monitoring techniques based on vibration data have received increasing attention in recent years. Since the measured modal characteristics and the transient motion of a beam exhibit low sensitivity to damage, numerical techniques for accurately computing vibration characteristics are needed. Here we use a Meshless Local Petrov-Galerkin (MLPG) method to analyze vibrations of a beam with multiple cracks. The trial and the test functions are constructed using the Generalized Moving Least Squares (GMLS) approximation. The smoothness of the GMLS basis functions requires the use of special techniques to account for the slope discontinuities at More >

  • Open Access

    ARTICLE

    The Generalized Interpolation Material Point Method

    S. G. Bardenhagen1,2, E. M. Kober3

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.6, pp. 477-496, 2004, DOI:10.3970/cmes.2004.005.477

    Abstract The Material Point Method (MPM) discrete solution procedure for computational solid mechanics is generalized using a variational form and a Petrov–Galerkin discretization scheme, resulting in a family of methods named the Generalized Interpolation Material Point(GIMP) methods. The generalizationpermits identification with aspects of other point or node based discrete solution techniques which do not use a body–fixed grid, i.e. the “meshless methods”. Similarities are noted and some practical advantages relative to some of these methods are identified. Examples are used to demonstrate and explain numerical artifact noise which can be expected inMPM calculations. Thisnoiseresultsin non-physical local More >

  • Open Access

    ARTICLE

    Meshless Local Petrov-Galerkin Method in Anisotropic Elasticity

    J. Sladek1, V. Sladek1, S.N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.5, pp. 477-490, 2004, DOI:10.3970/cmes.2004.006.477

    Abstract A meshless method based on the local Petrov-Galerkin approach is proposed for solution of static and elastodynamic problems in a homogeneous anisotropic medium. The Heaviside step function is used as the test functions in the local weak form. It is leading to derive local boundary integral equations (LBIEs). For transient elastodynamic problems the Laplace transfor technique is applied and the LBIEs are given in the Laplace transform domain. The analyzed domain is covered by small subdomains with a simple geometry such as circles in 2-d problems. The final form of local integral equations has a More >

  • Open Access

    ARTICLE

    Radial Basis Function and Genetic Algorithms for Parameter Identification to Some Groundwater Flow Problems

    B. Amaziane1, A. Naji2, D. Ouazar3

    CMC-Computers, Materials & Continua, Vol.1, No.2, pp. 117-128, 2004, DOI:10.3970/cmc.2004.001.117

    Abstract In this paper, a meshless method based on Radial Basis Functions (RBF) is coupled with genetic algorithms for parameter identification to some selected groundwater flow applications. The treated examples are generated by the diffusion equation with some specific boundary conditions describing the groundwater fluctuation in a leaky confined aquifer system near open tidal water. To select the best radial function interpolation and show the powerful of the method in comparison to domain based discretization methods, Multiquadric (MQ), Thin-Plate Spline (TPS) and Conical type functions are investigated and compared to finite difference results or analytical one. More >

  • Open Access

    ARTICLE

    Meshless Local Petrov-Galerkin Method for Heat Conduction Problem in an Anisotropic Medium

    J. Sladek1, V. Sladek1, S.N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.3, pp. 309-318, 2004, DOI:10.3970/cmes.2004.006.309

    Abstract Meshless methods based on the local Petrov-Galerkin approach are proposed for solution of steady and transient heat conduction problem in a continuously nonhomogeneous anisotropic medium. Fundamental solution of the governing partial differential equations and the Heaviside step function are used as the test functions in the local weak form. It is leading to derive local boundary integral equations which are given in the Laplace transform domain. The analyzed domain is covered by small subdomains with a simple geometry. To eliminate the number of unknowns on artificial boundaries of subdomains the modified fundamental solution and/or the More >

  • Open Access

    ARTICLE

    A Meshless Method for the Laplace and Biharmonic Equations Subjected to Noisy Boundary Data

    B. Jin1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.3, pp. 253-262, 2004, DOI:10.3970/cmes.2004.006.253

    Abstract In this paper, we propose a new numerical scheme for the solution of the Laplace and biharmonic equations subjected to noisy boundary data. The equations are discretized by the method of fundamental solutions. Since the resulting matrix equation is highly ill-conditioned, a regularized solution is obtained using the truncated singular value decomposition, with the regularization parameter given by the L-curve method. Numerical experiments show that the method is stable with respect to the noise in the data, highly accurate and computationally very efficient. More >

  • Open Access

    ARTICLE

    Numerical Computation of Discrete Differential Operators on Non-Uniform Grids

    N. Sukumar1, J. E. Bolander1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.6, pp. 691-706, 2003, DOI:10.3970/cmes.2003.004.691

    Abstract In this paper, we explore the numerical approximation of discrete differential operators on non-uniform grids. The Voronoi cell and the notion of natural neighbors are used to approximate the Laplacian and the gradient operator on irregular grids. The underlying weight measure used in the numerical computations is the {\em Laplace weight function}, which has been previously adopted in meshless Galerkin methods. We develop a difference approximation for the diffusion operator on irregular grids, and present numerical solutions for the Poisson equation. On regular grids, the discrete Laplacian is shown to reduce to the classical finite More >

  • Open Access

    ARTICLE

    A MLPG (LBIE) method for solving frequency domain elastic problems

    E. J. Sellountos1, D. Polyzos2

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.6, pp. 619-636, 2003, DOI:10.3970/cmes.2003.004.619

    Abstract A new meshless local Petrov-Galerkin (MLPG) method for solving two dimensional frequency domain elastodynamic problems is proposed. Since the method utilizes, in its weak formulation, either the elastostatic or the frequency domain elastodynamic fundamental solution as test function, it is equivalent to the local boundary integral equation (LBIE) method. Nodal points spread over the analyzed domain are considered and the moving least squares (MLS) interpolation scheme for the approximation of the interior and boundary variables is employed. Two integral equations suitable for the integral representation of the displacement fields in the local sub- domains are… More >

Displaying 141-150 on page 15 of 155. Per Page