Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (30)
  • Open Access

    ARTICLE

    Optimal Placement and Sizing of Distributed Generation Using Metaheuristic Algorithm

    D. Nageswari1,*, N. Kalaiarasi2, G. Geethamahalakshmi1

    Computer Systems Science and Engineering, Vol.41, No.2, pp. 493-509, 2022, DOI:10.32604/csse.2022.020539 - 25 October 2021

    Abstract Power loss and voltage uncertainty are the major issues prevalently faced in the design of distribution systems. But such issues can be resolved through effective usage of networking reconfiguration that has a combination of Distributed Generation (DG) units from distribution networks. In this point of view, optimal placement and sizing of DGs are effective ways to boost the performance of power systems. The optimum allocation of DGs resolves various problems namely, power loss, voltage profile improvement, enhanced reliability, system stability, and performance. Several research works have been conducted to address the distribution system problems in… More >

  • Open Access

    ARTICLE

    PSO Based Torque Ripple Minimization Of Switched Reluctance Motor Using FPGA Controller

    A. Manjula1,*, L. Kalaivani2, M. Gengaraj2

    Intelligent Automation & Soft Computing, Vol.29, No.2, pp. 451-465, 2021, DOI:10.32604/iasc.2021.016088 - 16 June 2021

    Abstract The fast-growing field of mechanical robotization necessitates a well-designed and controlled version of electric drives. The concept of control concerning mechanical characteristics also requires a methodology in which the system needs to be modeled precisely and deals with uncertainty. The proposed method provides the enhanced performance of Switched Reluctance Motor (SRM) by controlling its speed and minimized torque ripple. Proportional-Integral-Derivative (PID) controllers have drawn more attention in industry automation due to their ease and robustness. The performances are further improved by using fractional order (Non-integer) controllers. The Modified Particle Swarm Optimization (MPSO) based optimization approach… More >

  • Open Access

    ARTICLE

    Adaptive Relay Selection Scheme for Minimization of the Transmission Time

    Yu-Jin Na1, Ji-Sung Jung1, Young-Hwan You2, Hyoung-Kyu Song1,*

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 1361-1373, 2021, DOI:10.32604/cmc.2021.018481 - 04 June 2021

    Abstract As the installation of small cells increases, the use of relay also increases. The relay operates as a base station as well as just an amplifier. As the roles and types of relays become more diverse, appropriate relay selection technology is an effective way to improve communication performance. Many researches for relay selection have been studied to secure the reliability of relay communication. In this paper, the relay selection scheme is proposed for a cooperative system using decode-and-forward (DF) relaying scheme in the mobile communication system. To maintain the transmission rate, the proposed scheme classifies… More >

  • Open Access

    ARTICLE

    Time and Quantity Based Hybrid Consolidation Algorithms for Reduced Cost Products Delivery

    Muhammad Ali Memon1, Asadullah Shaikh2,*, Adel Sulaiman2, Abdullah Alghamdi2, Mesfer Alrizq2, Bernard Archimède3

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 409-432, 2021, DOI:10.32604/cmc.2021.017653 - 04 June 2021

    Abstract In today’s competitive business environment, the cost of a product is one of the most important considerations for its sale. Businesses are heavily involved in research strategies to minimize the cost of elements that can impact on the final price of the product. Logistics is one such factor. Numerous products arrive from diverse locations to consumers in today’s digital era of online businesses. Clearly, the logistics sector faces several dilemmas from order attributes to environmental changes in this regard. This has specially been noted during the ongoing Covid-19 pandemic where the demands on online businesses… More >

  • Open Access

    ARTICLE

    Efficient Concurrent L1-Minimization Solvers on GPUs

    Xinyue Chu1, Jiaquan Gao1,*, Bo Sheng2

    Computer Systems Science and Engineering, Vol.38, No.3, pp. 305-320, 2021, DOI:10.32604/csse.2021.017144 - 19 May 2021

    Abstract Given that the concurrent L1-minimization (L1-min) problem is often required in some real applications, we investigate how to solve it in parallel on GPUs in this paper. First, we propose a novel self-adaptive warp implementation of the matrix-vector multiplication (Ax) and a novel self-adaptive thread implementation of the matrix-vector multiplication (ATx), respectively, on the GPU. The vector-operation and inner-product decision trees are adopted to choose the optimal vector-operation and inner-product kernels for vectors of any size. Second, based on the above proposed kernels, the iterative shrinkage-thresholding algorithm is utilized to present two concurrent L1-min solvers from More >

  • Open Access

    ARTICLE

    l1-norm Based GWLP for Robust Frequency Estimation

    Yuan Chen1, Liangtao Duan1, Weize Sun2, *, Jingxin Xu3

    Journal on Big Data, Vol.1, No.3, pp. 107-116, 2019, DOI:10.32604/jbd.2019.07294

    Abstract In this work, we address the frequency estimation problem of a complex singletone embedded in the heavy-tailed noise. With the use of the linear prediction (LP) property and l1-norm minimization, a robust frequency estimator is developed. Since the proposed method employs the weighted l1-norm on the LP errors, it can be regarded as an extension of the lp-generalized weighted linear predictor. Computer simulations are conducted in the environment of α-stable noise, indicating the superiority of the proposed algorithm, in terms of its robust to outliers and nearly optimal estimation performance. More >

  • Open Access

    ARTICLE

    Identification of Cavities in a Three-Dimensional Layer by Minimization of an Optimal Cost Functional Expansion

    A.E. Martínez-Castro1, I.H. Faris1, R. Gallego1

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.3, pp. 177-206, 2012, DOI:10.3970/cmes.2012.087.177

    Abstract In this paper, the identification of hidden defects inside a three-dimen -sional layer is set as an Identification Inverse Problem. This problem is solved by minimizing a cost functional which is linearized with respect to the volume defects, leading to a procedure that requires only computations at the host domain free of defects. The cost functional is stated as the misfit between experimental and computed displacements and spherical and/or ellipsoidal cavities are the defects to locate. The identification of these cavities is based on the measured displacements at a set of points due to time-harmonic… More >

  • Open Access

    ARTICLE

    Sensitivity of the Acoustic Scattering Problem in Prolate Spheroidal Geometry with Respect to Wavenumber and Shape

    D. Kourounis1, L.N. Gergidis1, A. Charalambopoulos1

    CMES-Computer Modeling in Engineering & Sciences, Vol.28, No.3, pp. 185-202, 2008, DOI:10.3970/cmes.2008.028.185

    Abstract The sensitivity of analytical solutions of the direct acoustic scattering problem in prolate spheroidal geometry on the wavenumber and shape, is extensively investigated in this work. Using the well known Vekua transformation and the complete set of radiating "outwards'' eigensolutions of the Helmholtz equation, introduced in our previous work ([Charalambopoulos and Dassios(2002)], [Gergidis, Kourounis, Mavratzas, and Charalambopoulos (2007)]), the scattered field is expanded in terms of it, detouring so the standard spheroidal wave functions along with their inherent numerical deficiencies. An approach is employed for the determination of the expansion coefficients, which is optimal in… More >

  • Open Access

    ARTICLE

    Acoustic Scattering in Prolate Spheroidal Geometry via Vekua Tranformation -- Theory and Numerical Results

    L.N. Gergidis, D. Kourounis, S. Mavratzas, A. Charalambopoulos1

    CMES-Computer Modeling in Engineering & Sciences, Vol.21, No.2, pp. 157-176, 2007, DOI:10.3970/cmes.2007.021.157

    Abstract A new complete set of scattering eigensolutions of Helmholtz equation in spheroidal geometry is constructed in this paper. It is based on the extension to exterior boundary value problems of the well known Vekua transformation pair, which connects the kernels of Laplace and Helmholtz operators. The derivation of this set is purely analytic. It avoids the implication of the spheroidal wave functions along with their accompanying numerical deficiencies. Using this novel set of eigensolutions, we solve the acoustic scattering problem from a soft acoustic spheroidal scatterer, by expanding the scattered field in terms of it. More >

  • Open Access

    ARTICLE

    Weight-Minimization of Sandwich Structures by a Heuristic Topology Optimization Algorithm

    C. Tapp1, W. Hansel, C. Mittelstedt, W. Becker2

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.6, pp. 563-574, 2004, DOI:10.3970/cmes.2004.005.563

    Abstract A heuristic algorithm for the weight minimization of sandwich plates is presented. The method is based on a preexisting algorithm for the layerwise topology optimization of symmetric laminates under in-plane loads. The presented algorithm uses structural analyses based on finite elements and explicitly accounts for the special sandwich situation. During the optimization procedure the algorithm adds or subtracts material from the layers of the face sheets and the core of the sandwich plate in regions of high or low stresses respectively. The orientation angles of the layers of the sandwich facings are not varied inorder More >

Displaying 21-30 on page 3 of 30. Per Page