Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (230)
  • Open Access

    ARTICLE

    A Deep Learning Framework for Arabic Cyberbullying Detection in Social Networks

    Yahya Tashtoush1,*, Areen Banysalim1, Majdi Maabreh2, Shorouq Al-Eidi3, Ola Karajeh4, Plamen Zahariev5

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3113-3134, 2025, DOI:10.32604/cmc.2025.062724 - 16 April 2025

    Abstract Social media has emerged as one of the most transformative developments on the internet, revolutionizing the way people communicate and interact. However, alongside its benefits, social media has also given rise to significant challenges, one of the most pressing being cyberbullying. This issue has become a major concern in modern society, particularly due to its profound negative impacts on the mental health and well-being of its victims. In the Arab world, where social media usage is exceptionally high, cyberbullying has become increasingly prevalent, necessitating urgent attention. Early detection of harmful online behavior is critical to… More >

  • Open Access

    ARTICLE

    Institution Attribute Mining Technology for Access Control Based on Hybrid Capsule Network

    Aodi Liu, Xuehui Du*, Na Wang, Xiangyu Wu

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 1471-1489, 2025, DOI:10.32604/cmc.2025.059784 - 26 March 2025

    Abstract Security attributes are the premise and foundation for implementing Attribute-Based Access Control (ABAC) mechanisms. However, when dealing with massive volumes of unstructured text big data resources, the current attribute management methods based on manual extraction face several issues, such as high costs for attribute extraction, long processing times, unstable accuracy, and poor scalability. To address these problems, this paper proposes an attribute mining technology for access control institutions based on hybrid capsule networks. This technology leverages transfer learning ideas, utilizing Bidirectional Encoder Representations from Transformers (BERT) pre-trained language models to achieve vectorization of unstructured text… More >

  • Open Access

    ARTICLE

    DIEONet: Domain-Invariant Information Extraction and Optimization Network for Visual Place Recognition

    Shaoqi Hou1,2,3,*, Zebang Qin2, Chenyu Wu2, Guangqiang Yin2, Xinzhong Wang1, Zhiguo Wang2,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 5019-5033, 2025, DOI:10.32604/cmc.2025.058233 - 06 March 2025

    Abstract Visual Place Recognition (VPR) technology aims to use visual information to judge the location of agents, which plays an irreplaceable role in tasks such as loop closure detection and relocation. It is well known that previous VPR algorithms emphasize the extraction and integration of general image features, while ignoring the mining of salient features that play a key role in the discrimination of VPR tasks. To this end, this paper proposes a Domain-invariant Information Extraction and Optimization Network (DIEONet) for VPR. The core of the algorithm is a newly designed Domain-invariant Information Mining Module (DIMM)… More >

  • Open Access

    ARTICLE

    Developing Different Models in QGIS for Determining Tourism Climate Comfort Using Remote Sensing and GIS

    Efdal Kaya*

    Revue Internationale de Géomatique, Vol.34, pp. 103-123, 2025, DOI:10.32604/rig.2025.060420 - 24 February 2025

    Abstract Global warming leads to climate change and hence effects tourism activities. Bioclimatic comfort indices are used to understand the changing climates of outdoor tourism. In this study, the models for the automatic calculation of the tourism climate index (TCI), heat index (HI), and new summer simmer index (NSSI) from bioclimatic comfort indices are used to determine the climatic conditions of outdoor tourism. The study compared the maps generated by the models with those manually created maps in ArcGIS. In order to statistically reveal how accurately the models produced maps, the relationship between the maps obtained… More >

  • Open Access

    REVIEW

    Particle Swarm Optimization: Advances, Applications, and Experimental Insights

    Laith Abualigah*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 1539-1592, 2025, DOI:10.32604/cmc.2025.060765 - 17 February 2025

    Abstract Particle Swarm Optimization (PSO) has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields. This paper attempts to carry out an update on PSO and gives a review of its recent developments and applications, but also provides arguments for its efficacy in resolving optimization problems in comparison with other algorithms. Covering six strategic areas, which include Data Mining, Machine Learning, Engineering Design, Energy Systems, Healthcare, and Robotics, the study demonstrates the versatility and effectiveness of the PSO. Experimental results are, however, used to show the strong and More >

  • Open Access

    ARTICLE

    Multi-Step Clustering of Smart Meters Time Series: Application to Demand Flexibility Characterization of SME Customers

    Santiago Bañales1,2,*, Raquel Dormido1, Natividad Duro1

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 869-907, 2025, DOI:10.32604/cmes.2024.054946 - 17 December 2024

    Abstract Customer segmentation according to load-shape profiles using smart meter data is an increasingly important application to vital the planning and operation of energy systems and to enable citizens’ participation in the energy transition. This study proposes an innovative multi-step clustering procedure to segment customers based on load-shape patterns at the daily and intra-daily time horizons. Smart meter data is split between daily and hourly normalized time series to assess monthly, weekly, daily, and hourly seasonality patterns separately. The dimensionality reduction implicit in the splitting allows a direct approach to clustering raw daily energy time series… More > Graphic Abstract

    Multi-Step Clustering of Smart Meters Time Series: Application to Demand Flexibility Characterization of SME Customers

  • Open Access

    ARTICLE

    LoRa Sense: Sensing and Optimization of LoRa Link Behavior Using Path-Loss Models in Open-Cast Mines

    Bhanu Pratap Reddy Bhavanam, Prashanth Ragam*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 425-466, 2025, DOI:10.32604/cmes.2024.052355 - 17 December 2024

    Abstract The Internet of Things (IoT) has orchestrated various domains in numerous applications, contributing significantly to the growth of the smart world, even in regions with low literacy rates, boosting socio-economic development. This study provides valuable insights into optimizing wireless communication, paving the way for a more connected and productive future in the mining industry. The IoT revolution is advancing across industries, but harsh geometric environments, including open-pit mines, pose unique challenges for reliable communication. The advent of IoT in the mining industry has significantly improved communication for critical operations through the use of Radio Frequency… More >

  • Open Access

    PROCEEDINGS

    Multi-Modality In-Situ Monitoring Big Data Mining for Enhanced Insight into the Laser Powder Bed Fusion Process, Structure, and Properties

    Xiayun Zhao1,*, Haolin Zhang1, Md Jahangir Alam1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-2, 2024, DOI:10.32604/icces.2024.011479

    Abstract Laser powder bed fusion (LPBF) is one predominant additive manufacturing (AM) technology for producing metallic parts with sophisticated designs that can find numerous applications in critical industries such as aerospace. To achieve precise, resilient, and intelligent LPBF, a comprehensive understanding of the dynamic processes and material responses within the actual conditions of LPBF-based AM is essential. However, obtaining such insights is challenging due to the intricate interactions among the laser, powder, part layers, and gas flow, among other factors. Multimodal in-situ monitoring is desired to visualize diverse process signatures, allowing for the direct and thorough… More >

  • Open Access

    ARTICLE

    A New Framework for Scholarship Predictor Using a Machine Learning Approach

    Bushra Kanwal1, Rana Saud Shoukat2, Saif Ur Rehman2,*, Mahwish Kundi3, Tahani AlSaedi4, Abdulrahman Alahmadi4

    Intelligent Automation & Soft Computing, Vol.39, No.5, pp. 829-854, 2024, DOI:10.32604/iasc.2024.054645 - 31 October 2024

    Abstract Education is the base of the survival and growth of any state, but due to resource scarcity, students, particularly at the university level, are forced into a difficult situation. Scholarships are the most significant financial aid mechanisms developed to overcome such obstacles and assist the students in continuing with their higher studies. In this study, the convoluted situation of scholarship eligibility criteria, including parental income, responsibilities, and academic achievements, is addressed. In an attempt to maximize the scholarship selection process, numerous machine learning algorithms, including Support Vector Machines, Neural Networks, K-Nearest Neighbors, and the C4.5… More >

  • Open Access

    ARTICLE

    Data-Driven Decision-Making for Bank Target Marketing Using Supervised Learning Classifiers on Imbalanced Big Data

    Fahim Nasir1, Abdulghani Ali Ahmed1,*, Mehmet Sabir Kiraz1, Iryna Yevseyeva1, Mubarak Saif2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1703-1728, 2024, DOI:10.32604/cmc.2024.055192 - 15 October 2024

    Abstract Integrating machine learning and data mining is crucial for processing big data and extracting valuable insights to enhance decision-making. However, imbalanced target variables within big data present technical challenges that hinder the performance of supervised learning classifiers on key evaluation metrics, limiting their overall effectiveness. This study presents a comprehensive review of both common and recently developed Supervised Learning Classifiers (SLCs) and evaluates their performance in data-driven decision-making. The evaluation uses various metrics, with a particular focus on the Harmonic Mean Score (F-1 score) on an imbalanced real-world bank target marketing dataset. The findings indicate… More >

Displaying 1-10 on page 1 of 230. Per Page