Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (908)
  • Open Access

    ARTICLE

    A Model of the Spatially Dependent Mechanical Properties of the Axon During Its Growth

    J.A. García1,2, J.M. Peña1, S. McHugh2, A. Jérusalem2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.5, pp. 411-432, 2012, DOI:10.3970/cmes.2012.087.411

    Abstract Neuronal growth is a complex process involving many intra- and extracellular mechanisms which are collaborating conjointly to participate to the development of the nervous system. More particularly, the early neocortical development involves the creation of a multilayered structure constituted by neuronal growth (driven by axonal or dendritic guidance cues) as well as cell migration. The underlying mechanisms of such structural lamination not only implies important biochemical changes at the intracellular level through axonal microtubule (de)polymerization and growth cone advance, but also through the directly dependent stress/stretch coupling mechanisms driving them. Efforts have recently focused on… More >

  • Open Access

    ARTICLE

    The Cellular Automaton Model of Microscopic Traffic Simulation Incorporating Feedback Control of Various Kinds of Drivers

    Yonghua Zhou1, Chao Mi1, Xun Yang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.86, No.6, pp. 533-550, 2012, DOI:10.3970/cmes.2012.086.533

    Abstract The cellular automaton (CA) model for traffic flow describes the restrictive vehicle movements using the distance headway (gap) between two adjacent vehicles. However, the autonomous and synergistic behaviors also exist in the vehicle movements. This paper makes an attempt to propose a microscopic traffic simulation model such that the feedback control behavior during the driving process is incorporated into the CA model. The acceleration, speed holding and deceleration are manipulated by the difference between the gap and the braking reference distance the driver perceives, which is generally observed in the realistic traffic. The braking reference… More >

  • Open Access

    ARTICLE

    Modeling and Simulation of Phantom Temperature Field in Magnetic Induction Hyperthermia

    J.H. Wu1, L.Y. Zhu2, J.T. Tang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.86, No.3, pp. 225-240, 2012, DOI:10.3970/cmes.2012.086.225

    Abstract Magnetic induction hyperthermia is one of hopeful methods for tumor therapy. In this method, several ferromagnetic seeds are needed to be implanted into the tumor. The seeds would produce energy, and cause the nearby tumor to die. Temperature prediction is significant before treatment. In addition, in clinical treatment, the tumor temperature has to be monitored in realtime. However, using as few thermometers as possible is the basic principle. Fortunately, the numerical simulation can contribute to realtime measurement. The seed temperature is modeled based on the Haider's method, which is treated as the thermal boundary in More >

  • Open Access

    ARTICLE

    On the Modeling of Surface Tension and its Applications by the Generalized Interpolation Material Point Method

    L. Chen1 J. H. Lee1, C.-f. Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.86, No.3, pp. 199-224, 2012, DOI:10.3970/cmes.2012.086.199

    Abstract This paper presents a numerical procedure to model surface tension using the Generalized Interpolation Material Point (GIMP) method which employs a background mesh in solving the equations of motion. The force due to surface tension is formulated at the mesh grid points by using the continuum surface force (CSF) model and then added to the equations of motion at each grid point. In GIMP, we use the grid mass as the color function in CSF and apply a moving average smoothing scheme to the grid mass to improve the accuracy in calculating the surface interface. More >

  • Open Access

    ARTICLE

    Multiple Time Scale Algorithm for Multiscale Material Modeling

    Jiaoyan Li1, Xianqiao Wang2, James D. Lee1

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.5, pp. 463-480, 2012, DOI:10.3970/cmes.2012.085.463

    Abstract This paper presents a novel multiple time scale algorithm integrated with the concurrent atomic/atom-based continuum modeling, which involves molecular dynamic (MD) simulation and coarse-grained molecular dynamic (CG-MD) simulation. To capture the key features of the solution region while still considering the computational efficiency, we decompose it into two sub-regions in space and utilize the central difference method with different time steps for different sub-regions to march on in time. Usually, the solution region contains a critical field and a non-critical far field. For the critical field (named atomic region) modeled by MD simulation, a relatively… More >

  • Open Access

    ARTICLE

    Modeling of Random Bimodal Structures of Composites (Application to Solid Propellants): II. Estimation of Effective Elastic Moduli

    V.A. Buryachenko1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.5, pp. 417-446, 2012, DOI:10.3970/cmes.2012.085.417

    Abstract We consider a linearly elastic composite medium, which consists of a homogeneous matrix containing a statistically homogeneous set of multimodal spherical inclusions modeling the morphology of heterogeneous solid propellants (HSP). Estimates of effective elastic moduli are performed using the multiparticle effective field method (MEFM) directly taking into account the interaction of different inclusions. Because of this, the effective elastic moduli of the HSP evaluated by the MEFM are sensitive to both the relative size of the inclusions (i.e., their multimodal nature) and the radial distribution functions (RDFs) estimated from experimental data, as well as from More >

  • Open Access

    ARTICLE

    Modeling of Random Bimodal Structures of Composites (Application to Solid Propellants): I. Simulation of Random Packs

    V.A. Buryachenko1,2, T.L. Jackson2,3, G. Amadio3

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.5, pp. 379-416, 2012, DOI:10.3970/cmes.2012.085.379

    Abstract We consider a composite medium, which consists of a homogeneous matrix containing a statistically homogeneous set of multimodal spherical inclusions. This model is used to represent the morphology of heterogeneous solid propellants (HSP) that are widely used in the rocket industry. The Lubachevsky-Stillinger algorithm is used to generate morphological models of HSP with large polydisperse packs of spherical inclusions. We modify the algorithm by proposing a random shaking procedure that leads to the stabilization of a statistical distribution of the simulated structure that is homogeneous, highly mixed, and protocol independent (in sense that the statistical More >

  • Open Access

    ARTICLE

    A 2D Lattice Boltzmann Full Analysis of MHD Convective Heat Transfer in Saturated Porous Square Enclosure

    Ridha Djebali1,2, Mohamed ElGanaoui3, Taoufik Naffouti1

    CMES-Computer Modeling in Engineering & Sciences, Vol.84, No.6, pp. 499-527, 2012, DOI:10.3970/cmes.2012.084.499

    Abstract A thermal lattice Boltzmann model for incompressible flow is developed and extended to investigate the natural convection flow in porous media under the effect of uniform magnetic field. The study shows that the flow behaviour is various parameters dependent. The Rayleigh number (Ra), Hartmann number (Ha), Darcy number (Da) and the medium inclination angle from the horizontal (Φ), the magnetic field orientation (ψ) and the medium porosity (ε) effects are carried out in wide ranges encountered in industrial and engineering applications. It was found that the flow and temperature patterns change significantly when varying these parameters. To confirm More >

  • Open Access

    ARTICLE

    Gauss Process Based Approach for Application on Landslide Displacement Analysis and Prediction

    Zaobao Liu1,2, Weiya Xu1, Jianfu Shao2

    CMES-Computer Modeling in Engineering & Sciences, Vol.84, No.2, pp. 99-122, 2012, DOI:10.3970/cmes.2012.084.099

    Abstract In this paper, the Gauss process is proposed for application on landslide displacement analysis and prediction with dynamic crossing validation. The prediction problem using noisy observations is first introduced. Then the Gauss process method is proposed for modeling non-stationary series of landslide displacements based on its ability to model noisy data. The monitoring displacement series of the New Wolong Temple Landslide is comparatively studied with other methods as an instance to implement the strategy of the Gauss process for predicting landslide displacement. The dynamic crossing validation method is adopted to manage the displacement series so… More >

  • Open Access

    ARTICLE

    High-Performance 3D Hybrid/Mixed, and Simple 3D Voronoi Cell Finite Elements, for Macro- & Micro-mechanical Modeling of Solids, Without Using Multi-field Variational Principles

    P. L. Bishay1, S.N. Atluri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.84, No.1, pp. 41-98, 2012, DOI:10.3970/cmes.2012.084.041

    Abstract Higher-order two-dimensional as well as low and higher-order three-dimensional new Hybrid/Mixed (H/M) finite elements based on independently assumed displacement, and judiciously chosen strain fields, denoted by HMFEM-2, are developed here for applications in macro-mechanics. The idea of these new H/M finite elements is based on collocating the components of the independent strain field, with those derived from the independently assumed displacement fields at judiciously and cleverly chosen collocation points inside the element. This is unlike the other techniques used in older H/M finite elements where a two-field variational principle was used in order to enforce… More >

Displaying 701-710 on page 71 of 908. Per Page