Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (798)
  • Open Access

    ARTICLE

    A Micromechanical Model for Polycrystal Ferroelectrics with Grain Boundary Effects

    K. Jayabal, A. Arockiarajan, S.M. Sivakumar1

    CMES-Computer Modeling in Engineering & Sciences, Vol.27, No.1&2, pp. 111-124, 2008, DOI:10.3970/cmes.2008.027.111

    Abstract A three dimensional micromechanically motivated model is proposed here based on firm thermodynamics principles to capture the nonlinear dissipative effects in the polycrystal ferroelectrics. The constraint imposed by the surrounding grains on a subgrain at its boundary during domain switching is modeled by a suitable modification of the switching threshold in a subgrain. The effect of this modification in the dissipation threshold is studied in the polycrystal behavior after due correlation of the subgrain behavior with the single crystal experimental results found in literature. Taking into consideration, all the domain switching possibilities, the volume fractions More >

  • Open Access

    ARTICLE

    Modeling Helicopter Rotor Blade Flapping Motion Considering Nonlinear Aerodynamics

    Jyoti Ranjan Majhi, Ranjan Ganguli1

    CMES-Computer Modeling in Engineering & Sciences, Vol.27, No.1&2, pp. 25-36, 2008, DOI:10.3970/cmes.2008.027.025

    Abstract The flapping equation for a rotating rigid helicopter blade is typically derived by considering 1) small flap angle, 2) small induced angle of attack and 3) linear aerodynamics. However, the use of nonlinear aerodynamics can make the assumptions of small angles suspect. A general equation describing helicopter blade flap dynamics for large flap angle and large induced inflow angle of attack is derived in this paper with nonlinear aerodynamics . Numerical simulations are performed by solving the nonlinear flapping ordinary differential equation for steady state conditions and the validity of the small angle approximations are More >

  • Open Access

    ARTICLE

    Atomic-scale Modeling of Self-Positioning Nanostructures

    Y. Nishidate1, G. P. Nikishkov1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.26, No.2, pp. 91-106, 2008, DOI:10.3970/cmes.2008.026.091

    Abstract Atomic-scale finite element procedure for modeling of self-positioning nanostructures is developed. Our variant of the atomic-scale finite element method is based on a meshless approach and on the Tersoff interatomic potential function. The developed algorithm is used for determination of equilibrium configuration of atoms after nanostructure self-positioning. Dependency of the curvature radius of nanostructures on their thickness is investigated. It is found that for thin nanostructures the curvature radius is considerably smaller than predicted by continuum mechanics equations. Curvature radius variation with varying orientation of crystallographic axes is also modeled and results are compared to More >

  • Open Access

    ARTICLE

    On Numerical Modeling of Cyclic Elastoplastic Response of Shell Structures

    Zdenko Tonković1, Jurica Sorić1,2, Ivica Skozrit1

    CMES-Computer Modeling in Engineering & Sciences, Vol.26, No.2, pp. 75-90, 2008, DOI:10.3970/cmes.2008.026.075

    Abstract An efficient numerical algorithm for modeling of cyclic elastoplastic deformation of shell structures is derived. The constitutive model includes highly nonlinear multi-component forms of kinematic and isotropic hardening functions in conjunction with von Mises yield criterion. Therein, the closest point projection algorithm employing the Reissner-Mindlin type kinematic model, completely formulated in tensor notation, is applied. A consistent elastoplastic tangent modulus ensures high convergence rates in the global iteration approach. The integration algorithm has been implemented into a layered assumed strain isoparametric finite shell element, which is capable of geometrical nonlinearities including finite rotations. Numerical examples, More >

  • Open Access

    ARTICLE

    A Meshless Modeling of Dynamic Strain Localization in Quasi-Brittle Materials Using Radial Basis Function Networks

    P. Le1, N. Mai-Duy2, T. Tran-Cong3, G. Baker4

    CMES-Computer Modeling in Engineering & Sciences, Vol.25, No.1, pp. 43-68, 2008, DOI:10.3970/cmes.2008.025.043

    Abstract This paper describes an integrated radial basis function network (IRBFN) method for the numerical modelling of the dynamics of strain localization due to strain softening in quasi-brittle materials. The IRBFN method is a truly meshless method that is based on an unstructured point collocation procedure. We introduce a new and effective regularization method to enhance the performance of the IRBFN method and alleviate the numerical oscillations associated with weak discontinuity at the elastic wave front. The dynamic response of a one dimensional bar is investigated using both local and non-local continuum models. Numerical results, which More >

  • Open Access

    ARTICLE

    Materials Modeling from Quantum Mechanics to The Mesoscale

    G. Fitzgerald1, G. Goldbeck-Wood2, P. Kung1, M. Petersen1, L. Subramanian1, J. Wescott2

    CMES-Computer Modeling in Engineering & Sciences, Vol.24, No.2&3, pp. 169-184, 2008, DOI:10.3970/cmes.2008.024.169

    Abstract Molecular modeling has established itself as an important component of applied research in areas such as drug discovery, catalysis, and polymers. Algorithmic improvements to these methods coupled with the increasing speed of computational hardware are making it possible to perform predictive modeling on ever larger systems. Methods are now available that are capable of modeling hundreds of thousands of atoms, and the results can have a significant impact on real-world engineering problems. The article reviews some of the modeling methods currently in use; provides illustrative examples of applications to challenges in sensors, fuel cells, and More >

  • Open Access

    ARTICLE

    Modeling and Bending Vibration of the Blade of a Horizontal-Axis Wind Power Turbine

    Shueei-Muh Lin1, Sen-Yung Lee2, Yu-Sheng Lin3

    CMES-Computer Modeling in Engineering & Sciences, Vol.23, No.3, pp. 175-186, 2008, DOI:10.3970/cmes.2008.023.175

    Abstract The blade of a horizontal-axis wind power turbine is modeled as a rotating beam with pre-cone angles and setting angles. Based on the Bernoulli-Euler beam theory, without considering the axial extension deformation and the Coriolis forces effect, the governing differential equations for the bending vibration of the beam are derived. It is pointed out that if the geometric and the material properties of the beam are in polynomial forms, then the exact solution for the system can be obtained. Based on the frequency relations as revealed, without tedious numerical analysis, one can reach many general More >

  • Open Access

    ARTICLE

    Consolidation of a Soft Clay Composite: Experimental Results and Computational Estimates

    A.P.S. Selvadurai1, H. Ghiabi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.23, No.1, pp. 53-74, 2008, DOI:10.3970/cmes.2008.023.053

    Abstract This paper deals with the problem of the consolidation of a composite consisting of alternate layers of soft clay and a granular material. A series of experiments were conducted on components to develop the constitutive models that can be implemented in a computational approach. The constitutive response of the soft clay is represented by a poro-elasto-plastic Cam clay-based model and the granular medium by an elasto-plastic model with a Drucker-Prager type failure criterion and a non-associated flow rule. The computational poro-elasto-plastic model is used to calibrate the experimental results derived from the one-dimensional tests and More >

  • Open Access

    ARTICLE

    Numerical Modeling of Grain Structure in Continuous Casting of Steel

    A.Z. Lorbiecka1, R.Vertnik2, H.Gjerkeš1, G. Manojlovič2, B.Senčič2, J. Cesar2, B.Šarler1,3

    CMC-Computers, Materials & Continua, Vol.8, No.3, pp. 195-208, 2008, DOI:10.3970/cmc.2008.008.195

    Abstract A numerical model is developed for the simulation of solidification grain structure formation (equiaxed to columnar and columnar to equiaxed transitions) during the continuous casting process of steel billets. The cellular automata microstructure model is combined with the macroscopic heat transfer model. The cellular automata method is based on the Nastac's definition of neighborhood, Gaussian nucleation rule, and KGT growth model. The heat transfer model is solved by the meshless technique by using local collocation with radial basis functions. The microscopic model parameters have been adjusted with respect to the experimental data for steel 51CrMoV4. More >

  • Open Access

    ARTICLE

    A Numerical Study of the Fatigue Behaviour of Notched PVD-coated Ti-6Al-4V

    S. Baragetti1, F. Tordini2

    Structural Durability & Health Monitoring, Vol.3, No.3, pp. 165-176, 2007, DOI:10.3970/sdhm.2007.003.165

    Abstract The effect of a TiN PVD (Physical Vapor Deposition) coating on the fatigue behaviour of the titanium alloy Ti-6Al-4V was investigated. Fatigue tests were performed on coated and uncoated, both smooth and 120° V-notched, specimens in order to evaluate the influence of the coating on the substrate fatigue resistance. Numerical analyses were carried out in order to determine the stress distributions below the specimen surface and on the coating. Several coating elastic moduli were used in such calculations. The residual stress gradient induced by the coating process deposition and the substrate plasticization were also taken More >

Displaying 701-710 on page 71 of 798. Per Page