Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (172)
  • Open Access

    ARTICLE

    Chemical Reaction on Williamson Nanofluid’s Radiative MHD Dissipative Stagnation Point Flow over an Exponentially Inclined Stretching Surface with Multi-Slip Effects

    P. Saila Kumari1, S. Mohammed Ibrahim1, Giulio Lorenzini2,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.6, pp. 1839-1863, 2024, DOI:10.32604/fhmt.2024.057760 - 19 December 2024

    Abstract A wide range of technological and industrial domains, including heating processors, electrical systems, mechanical systems, and others, are facing issues as a result of the recent developments in heat transmission. Nanofluids are a novel type of heat transfer fluid that has the potential to provide solutions that will improve energy transfer. The current study investigates the effect of a magnetic field on the two-dimensional flow of Williamson nanofluid over an exponentially inclined stretched sheet. This investigation takes into account the presence of multi-slip effects. We also consider the influence of viscous dissipation, thermal radiation, chemical… More >

  • Open Access

    ARTICLE

    Optimizing Heat Sink Performance by Replacing Fins from Solid to Porous inside Various Enclosures Filled with a Hybrid Nanofluid

    Ahmed Dhafer Abdulsahib1,*, Dhirgham Alkhafaji1, Ibrahim M. Albayati2

    Frontiers in Heat and Mass Transfer, Vol.22, No.6, pp. 1777-1804, 2024, DOI:10.32604/fhmt.2024.057209 - 19 December 2024

    Abstract The current study generally aims to improve heat transfer in heat sinks by presenting a numerical analysis of natural convection of an enclosure with hot right and cool left walls, and thermally insulated top and bottom walls. The cold wall included configurations (half circle/half square) in various sizes (S = 0.1, 0.2, and 0.3), numbers (N = 1, 2, 3, and 4), and locations (C = 0.35, and 0.65). A heat sink is constructed of Aluminum attached to the hot wall, and composed of five fins with protrusions. Fins of the heat sink will be… More > Graphic Abstract

    Optimizing Heat Sink Performance by Replacing Fins from Solid to Porous inside Various Enclosures Filled with a Hybrid Nanofluid

  • Open Access

    ARTICLE

    Numerical Study of the Free Convection of a Hybrid Nano-Fluid Filling a Three-Dimensional Cavity Exposed to a Horizontal Magnetic Field

    Mouna Benshab1, Said Bouchta1,2,*, M’barek Feddaoui1, Abdellatif Dayf1, Jaouad Bouchta1, Abderrahman Nait Alla1

    Frontiers in Heat and Mass Transfer, Vol.22, No.6, pp. 1865-1885, 2024, DOI:10.32604/fhmt.2024.056551 - 19 December 2024

    Abstract This paper presents a numerical study on natural convection and heat transfer using a hybrid nanofluid within a three-dimensional cavity under the influence of a magnetic field. The primary objective of this research is to analyze how various magnetic field conditions affect the thermal performance of the hybrid nanofluid, particularly in terms of heat transfer and fluid motion. Specific objectives include evaluating the effects of the Rayleigh number, nanoparticle volume fraction, and Hartmann number on the dynamic and thermal fields, as well as the overall heat transfer efficiency. The transport equations were discretized using the… More >

  • Open Access

    ARTICLE

    Unsteady Flow of Hybrid Nanofluid with Magnetohydrodynamics-Radiation-Natural Convection Effects in a U-Shaped Wavy Porous Cavity

    Taher Armaghani1, Lioua Kolsi2, Najiyah Safwa Khashi’ie3,*, Ahmed Muhammed Rashad4, Muhammed Ahmed Mansour5, Taha Salah6, Aboulbaba Eladeb7

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2225-2251, 2024, DOI:10.32604/cmes.2024.056676 - 31 October 2024

    Abstract In this paper, the unsteady magnetohydrodynamic (MHD)-radiation-natural convection of a hybrid nanofluid within a U-shaped wavy porous cavity is investigated. This problem has relevant applications in optimizing thermal management systems in electronic devices, solar energy collectors, and other industrial applications where efficient heat transfer is very important. The study is based on the application of a numerical approach using the Finite Difference Method (FDM) for the resolution of the governing equations, which incorporates the Rosseland approximation for thermal radiation and the Darcy-Brinkman-Forchheimer model for porous media. It was found that the increase of Hartmann number… More >

  • Open Access

    ARTICLE

    Nanofluid Heat Transfer in Irregular 3D Surfaces under Magnetohydrodynamics and Multi-Slip Effects

    Mumtaz Khan1,*, Muhammad Shoaib Anwar2, Mudassar Imran3, Amer Rasheed4

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1399-1419, 2024, DOI:10.32604/fhmt.2024.056597 - 30 October 2024

    Abstract This study employs the Buongiorno model to explore nanoparticle migration in a mixed convection second-grade fluid over a slendering (variable thickness) stretching sheet. The convective boundary conditions are applied to the surface. In addition, the analysis has been carried out in the presence of Joule heating, slips effects, thermal radiation, heat generation and magnetohydrodynamic. This study aimed to understand the complex dynamics of these nanofluids under various external influences. The governing model has been developed using the flow assumptions such as boundary layer approximations in terms of partial differential equations. Governing partial differential equations are… More >

  • Open Access

    ARTICLE

    A Novel Integrated Photovoltaic System with a Three-Dimensional Pulsating Heat Pipe

    Mahyar Kargaran*, Hamid Reza Goshayeshi, Ali Reza Alizadeh Jajarm

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1461-1476, 2024, DOI:10.32604/fhmt.2024.056284 - 30 October 2024

    Abstract Solar energy is a valuable renewable energy source, and photovoltaic (PV) systems are a practical approach to harnessing this energy. Nevertheless, low energy efficiency is considered a major setback of the system. Moreover, high cell temperature and reflection of solar irradiance from the panel are considered chief culprits in this regard. Employing pulsating heat pipes (PHPs) is an innovative and useful approach to improving solar panel performance. This study presents the results of the power performance of a PV panel attached to a newly designed spiral pulsating heat pipe, while graphene oxide nanofluid with three More >

  • Open Access

    ARTICLE

    Artificial Intelligence-Driven FVM-ANN Model for Entropy Analysis of MHD Natural Bioconvection in Nanofluid-Filled Porous Cavities

    Noura Alsedais1, Mohamed Ahmed Mansour2, Abdelraheem M. Aly3, Sara I. Abdelsalam4,5,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1277-1307, 2024, DOI:10.32604/fhmt.2024.056087 - 30 October 2024

    Abstract The research examines fluid behavior in a porous box-shaped enclosure. The fluid contains nanoscale particles and swimming microbes and is subject to magnetic forces at an angle. Natural circulation driven by biological factors is investigated. The analysis combines a traditional numerical approach with machine learning techniques. Mathematical equations describing the system are transformed into a dimensionless form and then solved using computational methods. The artificial neural network (ANN) model, trained with the Levenberg-Marquardt method, accurately predicts values, showing high correlation (R = 1), low mean squared error (MSE), and minimal error clustering. Parametric analysis reveals significant… More >

  • Open Access

    ARTICLE

    Magneto-Hydro-Convective Nanofluid Flow in Porous Square Enclosure

    B. Ould Said1, F. Mebarek-Oudina2,*, M. A. Medebber3

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1343-1360, 2024, DOI:10.32604/fhmt.2024.054164 - 30 October 2024

    Abstract In this work, a steady mixed convection in a two-dimensional enclosure filled viananoliquid Cu/H2O through a porous medium was numerically analyzed. The nanoliquid flow is designated utilizing the Brinkman-Forchheimer model. The upper and the bottom horizontal walls are considered to be hot (Th) and cold temperature (Tc), respectively, whereas the other walls are thermally insulated. The impact of various dimensionless terms such as the Grashof number (Gr) in the ranges (0.01–20), the Reynolds number (Re) in the ranges (50–500), the Hartman number (Ha) in the ranges (0–20), and three different location cases (0.25, 0.5, and More >

  • Open Access

    ARTICLE

    Computational Investigation of Brownian Motion and Thermophoresis Effect on Blood-Based Casson Nanofluid on a Non-linearly Stretching Sheet with Ohmic and Viscous Dissipation Effects

    Haris Alam Zuberi1, Madan Lal1, Shivangi Verma1, Nurul Amira Zainal2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1137-1163, 2024, DOI:10.32604/cmes.2024.055493 - 27 September 2024

    Abstract Motivated by the widespread applications of nanofluids, a nanofluid model is proposed which focuses on uniform magnetohydrodynamic (MHD) boundary layer flow over a non-linear stretching sheet, incorporating the Casson model for blood-based nanofluid while accounting for viscous and Ohmic dissipation effects under the cases of Constant Surface Temperature (CST) and Prescribed Surface Temperature (PST). The study employs a two-phase model for the nanofluid, coupled with thermophoresis and Brownian motion, to analyze the effects of key fluid parameters such as thermophoresis, Brownian motion, slip velocity, Schmidt number, Eckert number, magnetic parameter, and non-linear stretching parameter on… More > Graphic Abstract

    Computational Investigation of Brownian Motion and Thermophoresis Effect on Blood-Based Casson Nanofluid on a Non-linearly Stretching Sheet with Ohmic and Viscous Dissipation Effects

  • Open Access

    ARTICLE

    Slip Effects on Casson Nanofluid over a Stretching Sheet with Activation Energy: RSM Analysis

    Jawad Raza1, F. Mebarek-Oudina2,*, Haider Ali1, I. E. Sarris3

    Frontiers in Heat and Mass Transfer, Vol.22, No.4, pp. 1017-1041, 2024, DOI:10.32604/fhmt.2024.052749 - 30 August 2024

    Abstract The current study is dedicated to presenting the Casson nanofluid over a stretching surface with activation energy. In order to make the problem more realistic, we employed magnetic field and slip effects on fluid flow. The governing partial differential equations (PDEs) were converted to ordinary differential equations (ODEs) by similarity variables and then solved numerically. The MATLAB built-in command ‘bvp4c’ is utilized to solve the system of ODEs. Central composite factorial design based response surface methodology (RSM) is also employed for optimization. For this, quadratic regression is used for data analysis. The results are concluded More > Graphic Abstract

    Slip Effects on Casson Nanofluid over a Stretching Sheet with Activation Energy: RSM Analysis

Displaying 1-10 on page 1 of 172. Per Page