Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access


    Preparation of Eco-Friendly High-Performance Manganese Dioxide Supercapacitors by Linear Sweep Voltammetry

    Junshan Zhao1,#, Yihan Shi1,#, Ming Zhang1, Liu Zhang1, Xumei Cui1, Xinghua Zhu2, Jitong Su1, Dandan Jing1, Dingyu Yang1,*

    Journal of Renewable Materials, Vol.11, No.1, pp. 79-91, 2023, DOI:10.32604/jrm.2023.022030

    Abstract In this paper, the non-polluting, non-toxic, and eco-friendly material-MnO2 electrodes were deposited on three-dimensional porous nickel (Ni) foam by linear sweep voltammetry, and the entire electrodeposition process did not require sintering of the material, which was fast and convenient while avoiding unnecessary energy consumption and thus was environmentally friendly. Scanning electron microscopy (SEM) and transmission electron microscopy were used to examine the surface and microscopic characteristics of each sample (TEM). Chronoamperometry (CA), cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy (EIS) were then used to determine the electrochemical characteristics of the manufactured samples. The More >

  • Open Access


    Preparation and Electrorheological Response of PAL/TiO2/PANI Nanorods

    Ling Wang1,2, Chenchen Huang1, Ping Zhang3, Fenghua Liu1,*, Ting Zou1, Zhixiang Li1, Jianfei Zhang1, Gaojie Xu1

    Journal of Renewable Materials, Vol.9, No.10, pp. 1707-1715, 2021, DOI:10.32604/jrm.2021.013884

    Abstract Using palygorskite (PAL) as template, the PAL/TiO2/PANI nano-rods were synthesized by heterogeneous precipitation and in-situ polymerization. The synthesized PAL/TiO2/PANI nanorods were used as a novel electrorheological (ER) fluid by mixing with silicone oil, which showed excellent ER effect. The yield stress of the PAL/TiO2/PANI based ER fluid (15 vol%) reached 8.8 kPa under 4 kV mm−1 electric field. The dynamic shear stress of the PAL/TiO2/PANI based ER fluid could maintain a stable level in the shear rate range of 0.1–100 s−1 . Furthermore, the PAL/TiO2/PANI ER fluid exhibited excellent suspension stability. More >

  • Open Access


    Longitudinal Vibration Analysis of Elastically Coupled Nanorods System with General Boundary Supports

    Deshui Xu, Jingtao Du*, Yuhao Zhao

    Sound & Vibration, Vol.53, No.2, pp. 16-28, 2019, DOI:10.32604/sv.2019.04033

    Abstract In this paper, an accurate series solution for the longitudinal vibration analysis of elastically coupled nanorods system is established, in which artificial springs are introduced to simulate such general coupling and boundary conditions. Energy formulation is derived for the description of axial dynamics of multiple coupled nanorods based on Eringen nonlocal elasticity. For each nanorod component, its longitudinal vibration displacement function is invariantly assumed as the superposition of Fourier series and boundary smoothed supplementary polynomials, with the aim to make all the spatial differential sufficiently continuous across each rod. All the unknown coefficients are determined… More >

  • Open Access


    Atomic Modeling of Carbon-Based Nanostructures as a Tool for Developing New Materials and Technologies

    D.W. Brenner, O.A. Shenderova, D.A. Areshkin, J.D. Schall1, S.-J. V. Frankland2

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.5, pp. 643-674, 2002, DOI:10.3970/cmes.2002.003.643

    Abstract The derivation of a bond-order potential energy function and a self-consistent tight-binding scheme is presented, followed by a survey of the application of these methods to calculating properties of carbon nanostructures. The modeling studies discussed include properties of functionalized and kinked carbon nanotubes, Raman shifts for hydrogen stored in nanotubes, nanotubes in a composite, properties of nanotubes in applied potential (electrical) fields, and structures and properties of nanocones, nanodiamond clusters and rods, and hybrid diamond-nanotube structures. More >

  • Open Access


    Application of An Atomistic Field Theory to Nano/Micro Materials Modeling and Simulation

    Xiaowei Zeng1

    CMES-Computer Modeling in Engineering & Sciences, Vol.74, No.3&4, pp. 183-202, 2011, DOI:10.3970/cmes.2011.074.183

    Abstract This paper presents an atomistic field theory and its application in modeling and simulation of nano/micro materials. Atomistic formulation and finite element implementation of the atomistic field theory is briefly introduced. Numerical simulations based on the field theory are performed to investigate the material behaviors of bcc iron at coarse-grained scale and we have obtained the mechanical strength and elastic modulus, which are in good agreement with results by first principles calculations. Also the nanoscale deformation and failure mechanism are revealed in bcc iron nanorods under simple tension. It is interesting to observe that under More >

Displaying 1-10 on page 1 of 5. Per Page