Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (107)
  • Open Access

    TECHNICAL REPORT

    NJmat 2.0: User Instructions of Data-Driven Machine Learning Interface for Materials Science

    Lei Zhang1,2,*, Hangyuan Deng1,2

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 1-11, 2025, DOI:10.32604/cmc.2025.062666 - 26 March 2025

    Abstract NJmat is a user-friendly, data-driven machine learning interface designed for materials design and analysis. The platform integrates advanced computational techniques, including natural language processing (NLP), large language models (LLM), machine learning potentials (MLP), and graph neural networks (GNN), to facilitate materials discovery. The platform has been applied in diverse materials research areas, including perovskite surface design, catalyst discovery, battery materials screening, structural alloy design, and molecular informatics. By automating feature selection, predictive modeling, and result interpretation, NJmat accelerates the development of high-performance materials across energy storage, conversion, and structural applications. Additionally, NJmat serves as an… More >

  • Open Access

    ARTICLE

    Multilingual Text Summarization in Healthcare Using Pre-Trained Transformer-Based Language Models

    Josua Käser1, Thomas Nagy1, Patrick Stirnemann1, Thomas Hanne2,*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 201-217, 2025, DOI:10.32604/cmc.2025.061527 - 26 March 2025

    Abstract We analyze the suitability of existing pre-trained transformer-based language models (PLMs) for abstractive text summarization on German technical healthcare texts. The study focuses on the multilingual capabilities of these models and their ability to perform the task of abstractive text summarization in the healthcare field. The research hypothesis was that large language models could perform high-quality abstractive text summarization on German technical healthcare texts, even if the model is not specifically trained in that language. Through experiments, the research questions explore the performance of transformer language models in dealing with complex syntax constructs, the difference… More >

  • Open Access

    REVIEW

    A Survey on Enhancing Image Captioning with Advanced Strategies and Techniques

    Alaa Thobhani1,*, Beiji Zou1, Xiaoyan Kui1,*, Amr Abdussalam2, Muhammad Asim3, Sajid Shah3, Mohammed ELAffendi3

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2247-2280, 2025, DOI:10.32604/cmes.2025.059192 - 03 March 2025

    Abstract Image captioning has seen significant research efforts over the last decade. The goal is to generate meaningful semantic sentences that describe visual content depicted in photographs and are syntactically accurate. Many real-world applications rely on image captioning, such as helping people with visual impairments to see their surroundings. To formulate a coherent and relevant textual description, computer vision techniques are utilized to comprehend the visual content within an image, followed by natural language processing methods. Numerous approaches and models have been developed to deal with this multifaceted problem. Several models prove to be state-of-the-art solutions… More >

  • Open Access

    REVIEW

    A Critical Review of Methods and Challenges in Large Language Models

    Milad Moradi1,*, Ke Yan2, David Colwell2, Matthias Samwald3, Rhona Asgari1

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 1681-1698, 2025, DOI:10.32604/cmc.2025.061263 - 17 February 2025

    Abstract This critical review provides an in-depth analysis of Large Language Models (LLMs), encompassing their foundational principles, diverse applications, and advanced training methodologies. We critically examine the evolution from Recurrent Neural Networks (RNNs) to Transformer models, highlighting the significant advancements and innovations in LLM architectures. The review explores state-of-the-art techniques such as in-context learning and various fine-tuning approaches, with an emphasis on optimizing parameter efficiency. We also discuss methods for aligning LLMs with human preferences, including reinforcement learning frameworks and human feedback mechanisms. The emerging technique of retrieval-augmented generation, which integrates external knowledge into LLMs, is More >

  • Open Access

    ARTICLE

    External Knowledge-Enhanced Cross-Attention Fusion Model for Tobacco Sentiment Analysis

    Lihua Xie1, Ni Tang1, Qing Chen1,*, Jun Li2,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3381-3397, 2025, DOI:10.32604/cmc.2024.058950 - 17 February 2025

    Abstract In the age of information explosion and artificial intelligence, sentiment analysis tailored for the tobacco industry has emerged as a pivotal avenue for cigarette manufacturers to enhance their tobacco products. Existing solutions have primarily focused on intrinsic features within consumer reviews and achieved significant progress through deep feature extraction models. However, they still face these two key limitations: (1) neglecting the influence of fundamental tobacco information on analyzing the sentiment inclination of consumer reviews, resulting in a lack of consistent sentiment assessment criteria across thousands of tobacco brands; (2) overlooking the syntactic dependencies between Chinese… More >

  • Open Access

    ARTICLE

    Assessing artificial intelligence responses to common patient questions regarding inflatable penile prostheses using a publicly available natural language processing tool (ChatGPT)

    Nader A. Shayegh1, Danae Byer1, Yasmine Griffiths1, Pamela W. Coleman2, Leslie A. Deane2, Jeremy Tonkin2

    Canadian Journal of Urology, Vol.31, No.3, pp. 11880-11885, 2024

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Evaluating Public Sentiments during Uttarakhand Flood: An Artificial Intelligence Techniques

    Stephen Afrifa1,2,*, Vijayakumar Varadarajan3,4,5,*, Peter Appiahene2, Tao Zhang1, Richmond Afrifa6

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1625-1639, 2024, DOI:10.32604/csse.2024.055084 - 22 November 2024

    Abstract Users of social networks can readily express their thoughts on websites like Twitter (now X), Facebook, and Instagram. The volume of textual data flowing from users has greatly increased with the advent of social media in comparison to traditional media. For instance, using natural language processing (NLP) methods, social media can be leveraged to obtain crucial information on the present situation during disasters. In this work, tweets on the Uttarakhand flash flood are analyzed using a hybrid NLP model. This investigation employed sentiment analysis (SA) to determine the people’s expressed negative attitudes regarding the disaster. More >

  • Open Access

    ARTICLE

    Comparative Analysis of Machine Learning Algorithms for Email Phishing Detection Using TF-IDF, Word2Vec, and BERT

    Arar Al Tawil1,*, Laiali Almazaydeh2, Doaa Qawasmeh3, Baraah Qawasmeh4, Mohammad Alshinwan1,5, Khaled Elleithy6

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3395-3412, 2024, DOI:10.32604/cmc.2024.057279 - 18 November 2024

    Abstract Cybercriminals often use fraudulent emails and fictitious email accounts to deceive individuals into disclosing confidential information, a practice known as phishing. This study utilizes three distinct methodologies, Term Frequency-Inverse Document Frequency, Word2Vec, and Bidirectional Encoder Representations from Transformers, to evaluate the effectiveness of various machine learning algorithms in detecting phishing attacks. The study uses feature extraction methods to assess the performance of Logistic Regression, Decision Tree, Random Forest, and Multilayer Perceptron algorithms. The best results for each classifier using Term Frequency-Inverse Document Frequency were Multilayer Perceptron (Precision: 0.98, Recall: 0.98, F1-score: 0.98, Accuracy: 0.98). Word2Vec’s More >

  • Open Access

    ARTICLE

    Arabic Dialect Identification in Social Media: A Comparative Study of Deep Learning and Transformer Approaches

    Enas Yahya Alqulaity1, Wael M.S. Yafooz1,*, Abdullah Alourani2, Ayman Jaradat3

    Intelligent Automation & Soft Computing, Vol.39, No.5, pp. 907-928, 2024, DOI:10.32604/iasc.2024.055470 - 31 October 2024

    Abstract Arabic dialect identification is essential in Natural Language Processing (NLP) and forms a critical component of applications such as machine translation, sentiment analysis, and cross-language text generation. The difficulties in differentiating between Arabic dialects have garnered more attention in the last 10 years, particularly in social media. These difficulties result from the overlapping vocabulary of the dialects, the fluidity of online language use, and the difficulties in telling apart dialects that are closely related. Managing dialects with limited resources and adjusting to the ever-changing linguistic trends on social media platforms present additional challenges. A strong… More >

  • Open Access

    ARTICLE

    LKMT: Linguistics Knowledge-Driven Multi-Task Neural Machine Translation for Urdu and English

    Muhammad Naeem Ul Hassan1,2, Zhengtao Yu1,2,*, Jian Wang1,2, Ying Li1,2, Shengxiang Gao1,2, Shuwan Yang1,2, Cunli Mao1,2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 951-969, 2024, DOI:10.32604/cmc.2024.054673 - 15 October 2024

    Abstract Thanks to the strong representation capability of pre-trained language models, supervised machine translation models have achieved outstanding performance. However, the performances of these models drop sharply when the scale of the parallel training corpus is limited. Considering the pre-trained language model has a strong ability for monolingual representation, it is the key challenge for machine translation to construct the in-depth relationship between the source and target language by injecting the lexical and syntactic information into pre-trained language models. To alleviate the dependence on the parallel corpus, we propose a Linguistics Knowledge-Driven Multi-Task (LKMT) approach to… More >

Displaying 1-10 on page 1 of 107. Per Page