Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,195)
  • Open Access

    ARTICLE

    Analyzing Human Trafficking Networks Using Graph-Based Visualization and ARIMA Time Series Forecasting

    Naif Alsharabi1,*, Akashdeep Bhardwaj2,*

    Journal of Cyber Security, Vol.7, pp. 135-163, 2025, DOI:10.32604/jcs.2025.064019 - 18 June 2025

    Abstract In a world driven by unwavering moral principles rooted in ethics, the widespread exploitation of human beings stands universally condemned as abhorrent and intolerable. Traditional methods employed to identify, prevent, and seek justice for human trafficking have demonstrated limited effectiveness, leaving us confronted with harrowing instances of innocent children robbed of their childhood, women enduring unspeakable humiliation and sexual exploitation, and men trapped in servitude by unscrupulous oppressors on foreign shores. This paper focuses on human trafficking and introduces intelligent technologies including graph database solutions for deciphering unstructured relationships and entity nodes, enabling the comprehensive More >

  • Open Access

    ARTICLE

    Efficient Method for Trademark Image Retrieval: Leveraging Siamese and Triplet Networks with Examination-Informed Loss Adjustment

    Thanh Bui-Minh1, Nguyen Long Giang1, Luan Thanh Le2,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1203-1226, 2025, DOI:10.32604/cmc.2025.064403 - 09 June 2025

    Abstract Image-based similar trademark retrieval is a time-consuming and labor-intensive task in the trademark examination process. This paper aims to support trademark examiners by training Deep Convolutional Neural Network (DCNN) models for effective Trademark Image Retrieval (TIR). To achieve this goal, we first develop a novel labeling method that automatically generates hundreds of thousands of labeled similar and dissimilar trademark image pairs using accompanying data fields such as citation lists, Vienna classification (VC) codes, and trademark ownership information. This approach eliminates the need for manual labeling and provides a large-scale dataset suitable for training deep learning… More >

  • Open Access

    REVIEW

    Monocular 3D Human Pose Estimation for REBA Ergonomics: A Critical Review of Recent Advances

    Ahmad Mwfaq Bataineh1,2,*, Ahmad Sufril Azlan Mohamed1

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 93-124, 2025, DOI:10.32604/cmc.2025.064250 - 09 June 2025

    Abstract Advancements in deep learning have considerably enhanced techniques for Rapid Entire Body Assessment (REBA) pose estimation by leveraging progress in three-dimensional human modeling. This survey provides an extensive overview of recent advancements, particularly emphasizing monocular image-based methodologies and their incorporation into ergonomic risk assessment frameworks. By reviewing literature from 2016 to 2024, this study offers a current and comprehensive analysis of techniques, existing challenges, and emerging trends in three-dimensional human pose estimation. In contrast to traditional reviews organized by learning paradigms, this survey examines how three-dimensional pose estimation is effectively utilized within musculoskeletal disorder (MSD)… More >

  • Open Access

    ARTICLE

    A Deep Learning Approach to Classification of Diseases in Date Palm Leaves

    Sameera V Mohd Sagheer1, Orwel P V2, P M Ameer3, Amal BaQais4, Shaeen Kalathil5,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1329-1349, 2025, DOI:10.32604/cmc.2025.063961 - 09 June 2025

    Abstract The precise identification of date palm tree diseases is essential for maintaining agricultural productivity and promoting sustainable farming methods. Conventional approaches rely on visual examination by experts to detect infected palm leaves, which is time intensive and susceptible to mistakes. This study proposes an automated leaf classification system that uses deep learning algorithms to identify and categorize diseases in date palm tree leaves with high precision and dependability. The system leverages pretrained convolutional neural network architectures (InceptionV3, DenseNet, and MobileNet) to extract and examine leaf characteristics for classification purposes. A publicly accessible dataset comprising multiple… More >

  • Open Access

    ARTICLE

    BDS-3 Satellite Orbit Prediction Method Based on Ensemble Learning and Neural Networks

    Ruibo Wei1,2, Yao Kong3, Mengzhao Li1,2, Feng Liu1,2,*, Fang Cheng4,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1507-1528, 2025, DOI:10.32604/cmc.2025.063722 - 09 June 2025

    Abstract To address uncertainties in satellite orbit error prediction, this study proposes a novel ensemble learning-based orbit prediction method specifically designed for the BeiDou navigation satellite system (BDS). Building on ephemeris data and perturbation corrections, two new models are proposed: attention-enhanced BPNN (AEBP) and Transformer-ResNet-BiLSTM (TR-BiLSTM). These models effectively capture both local and global dependencies in satellite orbit data. To further enhance prediction accuracy and stability, the outputs of these two models were integrated using the gradient boosting decision tree (GBDT) ensemble learning method, which was optimized through a grid search. The main contribution of this More >

  • Open Access

    ARTICLE

    Intelligent Management of Resources for Smart Edge Computing in 5G Heterogeneous Networks Using Blockchain and Deep Learning

    Mohammad Tabrez Quasim1,*, Khair Ul Nisa1, Mohammad Shahid Husain2, Abakar Ibraheem Abdalla Aadam1, Mohammed Waseequ Sheraz1, Mohammad Zunnun Khan1

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1169-1187, 2025, DOI:10.32604/cmc.2025.062989 - 09 June 2025

    Abstract Smart edge computing (SEC) is a novel paradigm for computing that could transfer cloud-based applications to the edge network, supporting computation-intensive services like face detection and natural language processing. A core feature of mobile edge computing, SEC improves user experience and device performance by offloading local activities to edge processors. In this framework, blockchain technology is utilized to ensure secure and trustworthy communication between edge devices and servers, protecting against potential security threats. Additionally, Deep Learning algorithms are employed to analyze resource availability and optimize computation offloading decisions dynamically. IoT applications that require significant resources… More >

  • Open Access

    ARTICLE

    Reinforcement Learning for Solving the Knapsack Problem

    Zhenfu Zhang1, Haiyan Yin2, Liudong Zuo3, Pan Lai1,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 919-936, 2025, DOI:10.32604/cmc.2025.062980 - 09 June 2025

    Abstract The knapsack problem is a classical combinatorial optimization problem widely encountered in areas such as logistics, resource allocation, and portfolio optimization. Traditional methods, including dynamic programming (DP) and greedy algorithms, have been effective in solving small problem instances but often struggle with scalability and efficiency as the problem size increases. DP, for instance, has exponential time complexity and can become computationally prohibitive for large problem instances. On the other hand, greedy algorithms offer faster solutions but may not always yield the optimal results, especially when the problem involves complex constraints or large numbers of items.… More >

  • Open Access

    ARTICLE

    Efficient Resource Management in IoT Network through ACOGA Algorithm

    Pravinkumar Bhujangrao Landge1, Yashpal Singh1, Hitesh Mohapatra2, Seyyed Ahmad Edalatpanah3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1661-1688, 2025, DOI:10.32604/cmes.2025.065599 - 30 May 2025

    Abstract Internet of things networks often suffer from early node failures and short lifespan due to energy limits. Traditional routing methods are not enough. This work proposes a new hybrid algorithm called ACOGA. It combines Ant Colony Optimization (ACO) and the Greedy Algorithm (GA). ACO finds smart paths while Greedy makes quick decisions. This improves energy use and performance. ACOGA outperforms Hybrid Energy-Efficient (HEE) and Adaptive Lossless Data Compression (ALDC) algorithms. After 500 rounds, only 5% of ACOGA’s nodes are dead, compared to 15% for HEE and 20% for ALDC. The network using ACOGA runs for More >

  • Open Access

    ARTICLE

    Demand Forecasting of a Microgrid-Powered Electric Vehicle Charging Station Enabled by Emerging Technologies and Deep Recurrent Neural Networks

    Sahbi Boubaker1,*, Adel Mellit2,3,*, Nejib Ghazouani4, Walid Meskine5, Mohamed Benghanem6, Habib Kraiem7,8

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 2237-2259, 2025, DOI:10.32604/cmes.2025.064530 - 30 May 2025

    Abstract Electric vehicles (EVs) are gradually being deployed in the transportation sector. Although they have a high impact on reducing greenhouse gas emissions, their penetration is challenged by their random energy demand and difficult scheduling of their optimal charging. To cope with these problems, this paper presents a novel approach for photovoltaic grid-connected microgrid EV charging station energy demand forecasting. The present study is part of a comprehensive framework involving emerging technologies such as drones and artificial intelligence designed to support the EVs’ charging scheduling task. By using predictive algorithms for solar generation and load demand… More >

  • Open Access

    ARTICLE

    Enhanced Fault Detection and Diagnosis in Photovoltaic Arrays Using a Hybrid NCA-CNN Model

    Umit Cigdem Turhal1, Yasemin Onal1,*, Kutalmis Turhal2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 2307-2332, 2025, DOI:10.32604/cmes.2025.064269 - 30 May 2025

    Abstract The reliability and efficiency of photovoltaic (PV) systems are essential for sustainable energy production, requiring accurate fault detection to minimize energy losses. This study proposes a hybrid model integrating Neighborhood Components Analysis (NCA) with a Convolutional Neural Network (CNN) to improve fault detection and diagnosis. Unlike Principal Component Analysis (PCA), which may compromise class relationships during feature extraction, NCA preserves these relationships, enhancing classification performance. The hybrid model combines NCA with CNN, a fundamental deep learning architecture, to enhance fault detection and diagnosis capabilities. The performance of the proposed NCA-CNN model was evaluated against other More > Graphic Abstract

    Enhanced Fault Detection and Diagnosis in Photovoltaic Arrays Using a Hybrid NCA-CNN Model

Displaying 1-10 on page 1 of 1195. Per Page