Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,603)
  • Open Access

    ARTICLE

    A Mathematical Optimization Model for Maintenance Planning of School Buildings

    Mehdi Zandiyehvakili1, Babak Aminnejad2,*, Alireza Lork3

    Intelligent Automation & Soft Computing, Vol.32, No.1, pp. 499-512, 2022, DOI:10.32604/iasc.2022.021461 - 26 October 2021

    Abstract This article presents a methodology to optimize the maintenance planning model and minimize the total maintenance costs of a typical school building. It makes an effort to provide a maintenance schedule, focusing on maintenance costs. In the allocation of operations to the school equipment, the parameter of its age was also taken into account. A mathematical optimization model to minimize the school maintenance cost in a three-year period was provided in the GAMS software with CPLEX solver. Finally, the optimum architecture of the Perceptron multi-layer neural network was used to predict the schedule of equipment More >

  • Open Access

    ARTICLE

    Restoration of Adversarial Examples Using Image Arithmetic Operations

    Kazim Ali*, Adnan N. Quershi

    Intelligent Automation & Soft Computing, Vol.32, No.1, pp. 271-284, 2022, DOI:10.32604/iasc.2022.021296 - 26 October 2021

    Abstract The current development of artificial intelligence is largely based on deep Neural Networks (DNNs). Especially in the computer vision field, DNNs now occur in everything from autonomous vehicles to safety control systems. Convolutional Neural Network (CNN) is based on DNNs mostly used in different computer vision applications, especially for image classification and object detection. The CNN model takes the photos as input and, after training, assigns it a suitable class after setting traceable parameters like weights and biases. CNN is derived from Human Brain's Part Visual Cortex and sometimes performs even better than Haman visual… More >

  • Open Access

    ARTICLE

    Deriving Driver Behavioral Pattern Analysis and Performance Using Neural Network Approaches

    Meenakshi Malik1, Rainu Nandal1,*, Surjeet Dalal2, Vivek Jalglan3, Dac-Nhuong Le4,5

    Intelligent Automation & Soft Computing, Vol.32, No.1, pp. 87-99, 2022, DOI:10.32604/iasc.2022.020249 - 26 October 2021

    Abstract It has been observed that driver behavior has a direct and considerable impact upon factors like fuel consumption, environmentally harmful emissions, and public safety, making it a key consideration of further research in order to monitor and control such related hazards. This has fueled our decision to conduct a study in order to arrive at an efficient way of analyzing the various parameters of driver behavior and find ways and means of positively impacting such behavior. It has been ascertained that such behavioral patterns can significantly impact the analysis of traffic-related conditions and outcomes. In… More >

  • Open Access

    ARTICLE

    Brain Image Classification Using Time Frequency Extraction with Histogram Intensity Similarity

    Thangavel Renukadevi1,*, Kuppusamy Saraswathi1, P. Prabu2, K. Venkatachalam3

    Computer Systems Science and Engineering, Vol.41, No.2, pp. 645-460, 2022, DOI:10.32604/csse.2022.020810 - 25 October 2021

    Abstract Brain medical image classification is an essential procedure in Computer-Aided Diagnosis (CAD) systems. Conventional methods depend specifically on the local or global features. Several fusion methods have also been developed, most of which are problem-distinct and have shown to be highly favorable in medical images. However, intensity-specific images are not extracted. The recent deep learning methods ensure an efficient means to design an end-to-end model that produces final classification accuracy with brain medical images, compromising normalization. To solve these classification problems, in this paper, Histogram and Time-frequency Differential Deep (HTF-DD) method for medical image classification… More >

  • Open Access

    ARTICLE

    Hybrid GLFIL Enhancement and Encoder Animal Migration Classification for Breast Cancer Detection

    S. Prakash1,*, M. Vinoth Kumar2, R. Saravana Ram3, Miodrag Zivkovic4, Nebojsa Bacanin4, Milos Antonijevic4

    Computer Systems Science and Engineering, Vol.41, No.2, pp. 735-749, 2022, DOI:10.32604/csse.2022.020533 - 25 October 2021

    Abstract Breast cancer has become the second leading cause of death among women worldwide. In India, a woman is diagnosed with breast cancer every four minutes. There has been no known basis behind it, and detection is extremely challenging among medical scientists and researchers due to unknown reasons. In India, the ratio of women being identified with breast cancer in urban areas is 22:1. Symptoms for this disease are micro calcification, lumps, and masses in mammogram images. These sources are mostly used for early detection. Digital mammography is used for breast cancer detection. In this study,… More >

  • Open Access

    ARTICLE

    A Smart Deep Convolutional Neural Network for Real-Time Surface Inspection

    Adriano G. Passos, Tiago Cousseau, Marco A. Luersen*

    Computer Systems Science and Engineering, Vol.41, No.2, pp. 583-593, 2022, DOI:10.32604/csse.2022.020020 - 25 October 2021

    Abstract A proper detection and classification of defects in steel sheets in real time have become a requirement for manufacturing these products, largely used in many industrial sectors. However, computers used in the production line of small to medium size companies, in general, lack performance to attend real-time inspection with high processing demands. In this paper, a smart deep convolutional neural network for using in real-time surface inspection of steel rolling sheets is proposed. The architecture is based on the state-of-the-art SqueezeNet approach, which was originally developed for usage with autonomous vehicles. The main features of More >

  • Open Access

    ARTICLE

    Insider Attack Detection Using Deep Belief Neural Network in Cloud Computing

    A. S. Anakath1,*, R. Kannadasan2, Niju P. Joseph3, P. Boominathan4, G. R. Sreekanth5

    Computer Systems Science and Engineering, Vol.41, No.2, pp. 479-492, 2022, DOI:10.32604/csse.2022.019940 - 25 October 2021

    Abstract Cloud computing is a high network infrastructure where users, owners, third users, authorized users, and customers can access and store their information quickly. The use of cloud computing has realized the rapid increase of information in every field and the need for a centralized location for processing efficiently. This cloud is nowadays highly affected by internal threats of the user. Sensitive applications such as banking, hospital, and business are more likely affected by real user threats. An intruder is presented as a user and set as a member of the network. After becoming an insider… More >

  • Open Access

    ARTICLE

    Comparative Study of Transfer Learning Models for Retinal Disease Diagnosis from Fundus Images

    Kuntha Pin1, Jee Ho Chang2, Yunyoung Nam3,*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5821-5834, 2022, DOI:10.32604/cmc.2022.021943 - 11 October 2021

    Abstract While the usage of digital ocular fundus image has been widespread in ophthalmology practice, the interpretation of the image has been still on the hands of the ophthalmologists which are quite costly. We explored a robust deep learning system that detects three major ocular diseases: diabetic retinopathy (DR), glaucoma (GLC), and age-related macular degeneration (AMD). The proposed method is composed of two steps. First, an initial quality evaluation in the classification system is proposed to filter out poor-quality images to enhance its performance, a technique that has not been explored previously. Second, the transfer learning… More >

  • Open Access

    ARTICLE

    An Intelligent Forecasting Model for Disease Prediction Using Stack Ensembling Approach

    Shobhit Verma1 , Nonita Sharma1 , Aman Singh2 , Abdullah Alharbi3 , Wael Alosaimi3 , Hashem Alyami4, Deepali Gupta5, Nitin Goyal5 ,*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 6041-6055, 2022, DOI:10.32604/cmc.2022.021747 - 11 October 2021

    Abstract This research work proposes a new stack-based generalization ensemble model to forecast the number of incidences of conjunctivitis disease. In addition to forecasting the occurrences of conjunctivitis incidences, the proposed model also improves performance by using the ensemble model. Weekly rate of acute Conjunctivitis per 1000 for Hong Kong is collected for the duration of the first week of January 2010 to the last week of December 2019. Pre-processing techniques such as imputation of missing values and logarithmic transformation are applied to pre-process the data sets. A stacked generalization ensemble model based on Auto-ARIMA (Autoregressive… More >

  • Open Access

    ARTICLE

    Artificial Intelligence Based Optimal Functional Link Neural Network for Financial Data Science

    Anwer Mustafa Hilal1, Hadeel Alsolai2, Fahd N. Al-Wesabi3, Mohammed Abdullah Al-Hagery4, Manar Ahmed Hamza1,*, Mesfer Al Duhayyim5

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 6289-6304, 2022, DOI:10.32604/cmc.2022.021522 - 11 October 2021

    Abstract In present digital era, data science techniques exploit artificial intelligence (AI) techniques who start and run small and medium-sized enterprises (SMEs) to have an impact and develop their businesses. Data science integrates the conventions of econometrics with the technological elements of data science. It make use of machine learning (ML), predictive and prescriptive analytics to effectively understand financial data and solve related problems. Smart technologies for SMEs enable allows the firm to get smarter with their processes and offers efficient operations. At the same time, it is needed to develop an effective tool which can… More >

Displaying 1151-1160 on page 116 of 1603. Per Page