Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,322)
  • Open Access

    ARTICLE

    Network Security Enhanced with Deep Neural Network-Based Intrusion Detection System

    Fatma S. Alrayes1, Mohammed Zakariah2, Syed Umar Amin3,*, Zafar Iqbal Khan3, Jehad Saad Alqurni4

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1457-1490, 2024, DOI:10.32604/cmc.2024.051996

    Abstract This study describes improving network security by implementing and assessing an intrusion detection system (IDS) based on deep neural networks (DNNs). The paper investigates contemporary technical ways for enhancing intrusion detection performance, given the vital relevance of safeguarding computer networks against harmful activity. The DNN-based IDS is trained and validated by the model using the NSL-KDD dataset, a popular benchmark for IDS research. The model performs well in both the training and validation stages, with 91.30% training accuracy and 94.38% validation accuracy. Thus, the model shows good learning and generalization capabilities with minor losses of… More >

  • Open Access

    ARTICLE

    A GAN-EfficientNet-Based Traceability Method for Malicious Code Variant Families

    Li Li*, Qing Zhang, Youran Kong

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 801-818, 2024, DOI:10.32604/cmc.2024.051916

    Abstract Due to the diversity and unpredictability of changes in malicious code, studying the traceability of variant families remains challenging. In this paper, we propose a GAN-EfficientNetV2-based method for tracing families of malicious code variants. This method leverages the similarity in layouts and textures between images of malicious code variants from the same source and their original family of malicious code images. The method includes a lightweight classifier and a simulator. The classifier utilizes the enhanced EfficientNetV2 to categorize malicious code images and can be easily deployed on mobile, embedded, and other devices. The simulator utilizes… More >

  • Open Access

    ARTICLE

    Optimized Binary Neural Networks for Road Anomaly Detection: A TinyML Approach on Edge Devices

    Amna Khatoon1, Weixing Wang1,*, Asad Ullah2, Limin Li3,*, Mengfei Wang1

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 527-546, 2024, DOI:10.32604/cmc.2024.051147

    Abstract Integrating Tiny Machine Learning (TinyML) with edge computing in remotely sensed images enhances the capabilities of road anomaly detection on a broader level. Constrained devices efficiently implement a Binary Neural Network (BNN) for road feature extraction, utilizing quantization and compression through a pruning strategy. The modifications resulted in a 28-fold decrease in memory usage and a 25% enhancement in inference speed while only experiencing a 2.5% decrease in accuracy. It showcases its superiority over conventional detection algorithms in different road image scenarios. Although constrained by computer resources and training datasets, our results indicate opportunities for More >

  • Open Access

    ARTICLE

    Contemporary Study for Detection of COVID-19 Using Machine Learning with Explainable AI

    Saad Akbar1,2, Humera Azam1, Sulaiman Sulmi Almutairi3,*, Omar Alqahtani4, Habib Shah4, Aliya Aleryani4

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1075-1104, 2024, DOI:10.32604/cmc.2024.050913

    Abstract The prompt spread of COVID-19 has emphasized the necessity for effective and precise diagnostic tools. In this article, a hybrid approach in terms of datasets as well as the methodology by utilizing a previously unexplored dataset obtained from a private hospital for detecting COVID-19, pneumonia, and normal conditions in chest X-ray images (CXIs) is proposed coupled with Explainable Artificial Intelligence (XAI). Our study leverages less preprocessing with pre-trained cutting-edge models like InceptionV3, VGG16, and VGG19 that excel in the task of feature extraction. The methodology is further enhanced by the inclusion of the t-SNE (t-Distributed… More >

  • Open Access

    ARTICLE

    Classified VPN Network Traffic Flow Using Time Related to Artificial Neural Network

    Saad Abdalla Agaili Mohamed*, Sefer Kurnaz

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 819-841, 2024, DOI:10.32604/cmc.2024.050474

    Abstract VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world. However, increasing network attack complexity and variety require increasingly advanced algorithms to recognize and categorize VPN network data. We present a novel VPN network traffic flow classification method utilizing Artificial Neural Networks (ANN). This paper aims to provide a reliable system that can identify a virtual private network (VPN) traffic from intrusion attempts, data exfiltration, and denial-of-service assaults. We compile a broad dataset of labeled VPN traffic flows from various apps and usage patterns. Next, we create an ANN architecture that can… More >

  • Open Access

    ARTICLE

    UNet Based on Multi-Object Segmentation and Convolution Neural Network for Object Recognition

    Nouf Abdullah Almujally1, Bisma Riaz Chughtai2, Naif Al Mudawi3, Abdulwahab Alazeb3, Asaad Algarni4, Hamdan A. Alzahrani5, Jeongmin Park6,*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1563-1580, 2024, DOI:10.32604/cmc.2024.049333

    Abstract The recent advancements in vision technology have had a significant impact on our ability to identify multiple objects and understand complex scenes. Various technologies, such as augmented reality-driven scene integration, robotic navigation, autonomous driving, and guided tour systems, heavily rely on this type of scene comprehension. This paper presents a novel segmentation approach based on the UNet network model, aimed at recognizing multiple objects within an image. The methodology begins with the acquisition and preprocessing of the image, followed by segmentation using the fine-tuned UNet architecture. Afterward, we use an annotation tool to accurately label… More >

  • Open Access

    CORRECTION

    Correction: Applying Customized Convolutional Neural Network to Kidney Image Volumes for Kidney Disease Detection

    Ali Altalbe1,2,*, Abdul Rehman Javed3

    Computer Systems Science and Engineering, Vol.48, No.4, pp. 1075-1081, 2024, DOI:10.32604/csse.2024.054179

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Microarray Gene Expression Classification: An Efficient Feature Selection Using Hybrid Swarm Intelligence Algorithm

    Punam Gulande*, R. N. Awale

    Computer Systems Science and Engineering, Vol.48, No.4, pp. 937-952, 2024, DOI:10.32604/csse.2024.046123

    Abstract The study of gene expression has emerged as a vital tool for cancer diagnosis and prognosis, particularly with the advent of microarray technology that enables the measurement of thousands of genes in a single sample. While this wealth of data offers invaluable insights for disease management, the high dimensionality poses a challenge for multiclass classification. In this context, selecting relevant features becomes essential to enhance classification model performance. Swarm Intelligence algorithms have proven effective in addressing this challenge, owing to their ability to navigate intricate, non-linear feature-class relationships. This paper introduces a novel hybrid swarm More >

  • Open Access

    ARTICLE

    Deep Learning: A Theoretical Framework with Applications in Cyberattack Detection

    Kaveh Heidary*

    Journal on Artificial Intelligence, Vol.6, pp. 153-175, 2024, DOI:10.32604/jai.2024.050563

    Abstract This paper provides a detailed mathematical model governing the operation of feedforward neural networks (FFNN) and derives the backpropagation formulation utilized in the training process. Network protection systems must ensure secure access to the Internet, reliability of network services, consistency of applications, safeguarding of stored information, and data integrity while in transit across networks. The paper reports on the application of neural networks (NN) and deep learning (DL) analytics to the detection of network traffic anomalies, including network intrusions, and the timely prevention and mitigation of cyberattacks. Among the most prevalent cyber threats are R2L,… More >

  • Open Access

    ARTICLE

    Intrusion Detection System for Smart Industrial Environments with Ensemble Feature Selection and Deep Convolutional Neural Networks

    Asad Raza1,*, Shahzad Memon1, Muhammad Ali Nizamani1, Mahmood Hussain Shah2

    Intelligent Automation & Soft Computing, Vol.39, No.3, pp. 545-566, 2024, DOI:10.32604/iasc.2024.051779

    Abstract Smart Industrial environments use the Industrial Internet of Things (IIoT) for their routine operations and transform their industrial operations with intelligent and driven approaches. However, IIoT devices are vulnerable to cyber threats and exploits due to their connectivity with the internet. Traditional signature-based IDS are effective in detecting known attacks, but they are unable to detect unknown emerging attacks. Therefore, there is the need for an IDS which can learn from data and detect new threats. Ensemble Machine Learning (ML) and individual Deep Learning (DL) based IDS have been developed, and these individual models achieved… More >

Displaying 21-30 on page 3 of 1322. Per Page