Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access

    ARTICLE

    Heat and Mass Transfer of a non-Newtonian Fluid Flow in an Anisotropic Porous Channel with Chemical Surface Reaction

    Z. Neffah1, H. Kahalerras1, *, B. Fersadou1

    FDMP-Fluid Dynamics & Materials Processing, Vol.14, No.1, pp. 39-56, 2018, DOI:10.3970/fdmp.2018.014.039

    Abstract A numerical study of heat and mass transfer in a non-Newtonian fluid in a parallel-plate channel partly filled with an anisotropic porous medium and subjected to an exothermic chemical reaction on its walls has been conducted. The flow field in the porous region has been modeled by the modified Brinkman-Forchheimer extended Darcy model for power-law fluids and a finite volume method has been used to solve the governing equations. The influence played by a variation of the anisotropic ratio on thermal conductivity, power-law index, Darcy number, and chemical reaction characteristics has been examined. We show More >

  • Open Access

    ARTICLE

    INFLUENCE OF CATTANEO-CHRISTOV HEAT FLUX MODEL ON MHD HYPERBOLIC TANGENT FLUID OVER A MOVING POROUS SURFACE

    Z. Iqbal, Ehtsham Azhar* , E. N. Maraj, Bilal Ahmad

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-7, 2017, DOI:10.5098/hmt.8.25

    Abstract Present investigation represent the study of Cattaneo-Christov heat flux model on boundary layer flow of hyperbolic tangent fluid which is generalized non-Newtonian fluid model over a continuously moving porous surface with a parallel free stream velocity. Mathematical formulation is completed in the presence of Magneto-hydrodynamics (MHD). Suitable relations transform the partial differential equations into the ordinary differential equations. Nonlinear flow analysis is computed and velocity and temperature profiles are obtained by shooting algorithm. Graphs are plotted to analyze the behavior of various involved physical parameters. Furthermore both type of flows Sakaidis ( λ = 1) and More >

  • Open Access

    ARTICLE

    SOLUTE TRANSPORT AND HEAT TRANSFER IN SINGLE-PHASE FLOW IN POROUS MEDIUM WITH GENERATIVE/DESTRUCTIVE CHEMICAL REACTION AND VARIABLE VISCOSITY IMPACTS

    Driss Achemlala,† , Mohammed Sritib , Mohamed El Harouib , Elyazid Flilihib , Mounir Kriraaa

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-10, 2017, DOI:10.5098/hmt.9.34

    Abstract In this paper we study the combined free convection, due to thermal and species diffusion, of a viscous incompressible non Newtonian fluid over a vertical plate embedded in a saturated porous medium with three thermal states of the surface and a constant concentration in the presence of a chemical reaction. The effect of temperature dependent viscosity is also investigated. The Ostwald-de Waele power-law model is used to characterize the non-Newtonian fluid behavior. The governing boundary layer equations along with the boundary conditions are first cast into a dimensionless form by a unique similarity transformation and More >

  • Open Access

    ARTICLE

    NUMERICAL STUDY OF NON-NEWTONIAN POLYMERIC BOUNDARY LAYER FLOW AND HEAT TRANSFER FROM A PERMEABLE HORIZONTAL ISOTHERMAL CYLINDER

    A. Subba Raoa,* , V. Ramachandra Prasada , P. Rajendraa , M. Sasikalaa , O. Anwar Begb

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-9, 2017, DOI:10.5098/hmt.9.2

    Abstract In this article, we investigate the nonlinear steady state boundary layer flow and heat transfer of an incompressible Jeffery non-Newtonian fluid from a permeable horizontal isothermal cylinder. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using a versatile, implicit, finite-difference technique. The numerical code is validated with previous studies. The influence of a number of emerging non-dimensional parameters, namely with Deborah number (De), surface suction parameter (S), Prandtl number (Pr), ratio of relaxation to retardation times (λ) and dimensionless tangential coordinate (ξ) on velocity and temperature evolution in the boundary… More >

  • Open Access

    ARTICLE

    ANALYSIS OF MHD TRANSIENT FREE CONVECTION FLOW OF A NEWTONIAN FLUID PAST AN INFINITE VERTICAL POROUS PLATE

    M. Umamaheswara, M. C. Rajua,*, S. V. K. Varmab

    Frontiers in Heat and Mass Transfer, Vol.6, pp. 1-7, 2015, DOI:10.5098/hmt.6.18

    Abstract An investigation is carried out to analyze the unsteady MHD free convection, heat and mass transfer flow of a Newtonian fluid past an infinite vertical porous plate with homogeneous chemical reaction and heat absorption/generation. A uniform magnetic field is applied perpendicular to the plate. The non-dimensional governing equations are solved numerically by using finite difference method. The effects of various parameters governing the flow on velocity, temperature, concentration, skin friction, Nusselt number and Sherwood number are studied through graphs. It is noticed that velocity decreases with an increase in Magnetic field while it increases with More >

  • Open Access

    ARTICLE

    CFD Analysis of Pulsatile Flow and Non-Newtonian Behavior of Blood in Arteries

    P. Jhunjhunwala∗,†, P.M. Padole∗,‡, S.B. Thombre∗,§

    Molecular & Cellular Biomechanics, Vol.12, No.1, pp. 37-47, 2015, DOI:10.3970/mcb.2015.012.037

    Abstract CFD analysis plays an important role in the area of analysis of blood flow as in-vivo measurements of blood flow is costly and easily not accessible. This paper presents simulation of blood flow in healthy and stenosed coronary artery 2- D models. The simulation was done considering non-Newtonian behavior of blood and pulsatile nature of blood flow which is close to physical scenario. Pressure distribution, velocity distribution and wall shear were examined to understand their effect on Atherosclerosis. More >

  • Open Access

    ARTICLE

    Modeling and Simulation of Non-Newtonian Fluid Mold Filling Process with Phase Change

    F. Wang1, J.L. Li1, B.X. Yang1, N.A. Hill2

    CMES-Computer Modeling in Engineering & Sciences, Vol.95, No.1, pp. 59-85, 2013, DOI:10.3970/cmes.2013.095.059

    Abstract A gas-liquid two-phase model for the simulation of a power-law fluid mold filling process with the consideration of phase change is proposed, in which the governing equations for the melt and air in the cavity, including the mass conservation, momentum conservation and energy conservation equations, are unified into one system of equation. A revised Enthalpy method, which can be used for both the melt and air in the mold cavity, is proposed to describe the phase change during the mold filling. Finite volume method on non-staggered grid is used to solve the system. The level More >

  • Open Access

    ARTICLE

    Navier-Stokes model with viscous strength

    K.Y. Volokh1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.1, pp. 87-101, 2013, DOI:10.3970/cmes.2013.092.087

    Abstract In the laminar mode interactions among molecules generate friction between layers of water that slide with respect to each other. This friction triggers the shear stress, which is traditionally presumed to be linearly proportional to the velocity gradient. The proportionality coefficient characterizes the viscosity of water. Remarkably, the standard Navier-Stokes model surmises that materials never fail – the transition to turbulence can only be triggered by some kinematic instability of the flow. This premise is probably the reason why the Navier-Stokes theory fails to explain the so-called subcritical transition to turbulence with the help of… More >

  • Open Access

    ARTICLE

    Low and Intermediate Re Solution of Lid Driven Cavity Problem by Local Radial Basis Function Collocation Method

    K. Mramor1, R. Vertnik2,3, B. Šarler1,3,4,5

    CMC-Computers, Materials & Continua, Vol.36, No.1, pp. 1-21, 2013, DOI:10.3970/cmc.2013.036.001

    Abstract This paper explores the application of Local Radial Basis Function Collocation Method (LRBFCM) [Šarler and Vertnik (2006)] for solution of Newtonian incompressible 2D fluid flow for a lid driven cavity problem [Ghia, Ghia, and Shin (1982)] in primitive variables. The involved velocity and pressure fields are represented on overlapping five-noded sub-domains through collocation by using Radial Basis Functions (RBF). The required first and second derivatives of the fields are calculated from the respective derivatives of the RBF’s. The momentum equation is solved through explicit time stepping. The method is alternatively structured with multiquadrics and inverse… More >

  • Open Access

    ARTICLE

    Cytoplasmic Motion Induced by Cytoskeleton Stretching and Its Effect on Cell Mechanics

    T. Zhang*

    Molecular & Cellular Biomechanics, Vol.8, No.3, pp. 169-194, 2011, DOI:10.3970/mcb.2011.008.169

    Abstract Cytoplasmic motion assumed as a steady state laminar flow induced by cytoskeleton stretching in a cell is determined and its effect on the mechanical behavior of the cell under externally applied forces is demonstrated. Non-Newtonian fluid is assumed for the multiphase cytoplasmic fluid and the analytical velocity field around the macromolecular chain is obtained by solving the reduced nonlinear momentum equation using homotopy technique. The entropy generation by the fluid internal friction is calculated and incorporated into the entropic elasticity based 8-chain constitutive relations. Numerical examples showed strengthening behavior of cells in response to externally More >

Displaying 11-20 on page 2 of 23. Per Page