Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (28)
  • Open Access

    ARTICLE

    Semi Analytical Solution of MHD and Heat Transfer of Couple Stress Fluid over a Stretching Sheet with Radiation in Porous Medium

    Sara I. Abdelsalam1,2,*, M. Khairy3, W. Abbas3, Ahmed M. Megahed4, M. S. Emam5

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 1833-1846, 2025, DOI:10.32604/fhmt.2025.069711 - 31 December 2025

    Abstract This comprehensive research examines the dynamics of magnetohydrodynamic (MHD) flow and heat transfer within a couple stress fluid. The investigation specifically focuses on the fluid’s behavior over a vertical stretching sheet embedded within a porous medium, providing valuable insights into the complex interactions between fluid mechanics, thermal transport, and magnetic fields. This study accounts for the significant impact of heat generation and thermal radiation, crucial factors for enhancing heat transfer efficiency in various industrial and technological contexts. The research employs mathematical techniques to simplify complex partial differential equations (PDEs) governing fluid flow and heat transfer.… More >

  • Open Access

    ARTICLE

    Rheological Properties of Solid Rocket Propellants Based on Machine Learning

    Minghai Zheng1, Zhaoxia Cui1,*, Jiang Liu1, Jianjun Li2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 431-455, 2025, DOI:10.32604/cmes.2025.071913 - 30 October 2025

    Abstract To accurately depict the strong nonlinear relationship between the viscosity of propellant slurry and shear rate, premix time, and temperature, and to improve the prediction accuracy, based on the sample preparation and experimental measurement of a certain type of propellant, viscosity data under multiple working conditions were obtained as the basic data for the research. By comparing typical models such as support vector regression and random forest, it was found that although the traditional BP neural network was superior to the both, its accuracy was still insufficient. Based on this, a BP model co-optimized by… More >

  • Open Access

    ARTICLE

    Non-Newtonian Electroosmotic Flow Effects on a Self-Propelled Undulating Sheet in a Wavy Channel

    Rehman Ali Shah1,2, Zeeshan Asghar3,*, Chenji Li2, Arezoo Ardekani2, Nasir Ali1

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 753-778, 2025, DOI:10.32604/cmes.2025.069177 - 30 October 2025

    Abstract The objective of this work is to investigate the dynamics of a self-propelled undulating sheet in a non-Newtonian electrolyte solution inside a wavy channel under the electroosmotic effect. The electrolyte solution, which is non-Newtonian, is modeled as a Carreau-Yasuda fluid. The flow generated by a combination of an undulating sheet and electroosmotic effect is obtained by solving the continuity and momentum equations. The electroosmotic body force term is derived using the Poisson-Boltzmann equation for the electric potential. A fourth-order ordinary differential equation for the stream function is solved under the Stokes flow regime. The dynamics More >

  • Open Access

    ARTICLE

    High Accuracy Simulation of Electro-Thermal Flow for Non-Newtonian Fluids in BioMEMS Applications

    Umer Farooq1, Nabil Kerdid2,*, Yasir Nawaz3, Muhammad Shoaib Arif 4

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 873-898, 2025, DOI:10.32604/cmes.2025.066800 - 31 July 2025

    Abstract In this study, we proposed a numerical technique for solving time-dependent partial differential equations that arise in the electro-osmotic flow of Carreau fluid across a stationary plate based on a modified exponential integrator. The scheme is comprised of two explicit stages. One is the exponential integrator type stage, and the second is the Runge-Kutta type stage. The spatial-dependent terms are discretized using the compact technique. The compact scheme can achieve fourth or sixth-order spatial accuracy, while the proposed scheme attains second-order temporal accuracy. Also, a mathematical model for the electro-osmotic flow of Carreau fluid over… More >

  • Open Access

    ARTICLE

    Advancements in Numerical Solutions: Fractal Runge-Kutta Approach to Model Time-Dependent MHD Newtonian Fluid with Rescaled Viscosity on Riga Plate

    Muhammad Shoaib Arif1,2,*, Kamaleldin Abodayeh1, Yasir Nawaz2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1213-1241, 2024, DOI:10.32604/cmes.2024.054819 - 27 September 2024

    Abstract Fractal time-dependent issues in fluid dynamics provide a distinct difficulty in numerical analysis due to their complex characteristics, necessitating specialized computing techniques for precise and economical solutions. This study presents an innovative computational approach to tackle these difficulties. The main focus is applying the Fractal Runge-Kutta Method to model the time-dependent magnetohydrodynamic (MHD) Newtonian fluid with rescaled viscosity flow on Riga plates. An efficient computational scheme is proposed for handling fractal time-dependent problems in flow phenomena. The scheme is comprised of three stages and constructed using three different time levels. The stability of the scheme… More >

  • Open Access

    ARTICLE

    Natural Convection of a Power-Law Nanofluid in a Square Cavity with a Vertical Fin

    Amira M’hadbi1,2,*, Mohammed El Ganaoui1, Haïkel Ben Hamed3, Amenallah Guizani2, Khalid Chtaibi3

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 2091-2108, 2024, DOI:10.32604/fdmp.2024.050763 - 23 August 2024

    Abstract The behavior of non-Newtonian power-law nanofluids under free convection heat transfer conditions in a cooled square enclosure equipped with a heated fin is investigated numerically. In particular, the impact of nanofluids, composed of water and Al₂O₃, TiO₂, and Cu nanoparticles, on heat transfer enhancement is examined. The aim of this research is also to analyze the influence of different parameters, including the Rayleigh number (Ra = 104 − 106), nanoparticle volume fraction (φ = 0% − 20%), non-Newtonian power-law indexes (n = 0.6 − 1.4), and fin dimensions (Ar = 0.3, 0.5, and 0.7). Streamlines and isotherms are used to… More > Graphic Abstract

    Natural Convection of a Power-Law Nanofluid in a Square Cavity with a Vertical Fin

  • Open Access

    ARTICLE

    Nonlinear Flow Properties of Newtonian Fluids through Rough Crossed Fractures

    Zhenguo Liu1,2, Shuchen Li1,3, Richeng Liu3,*, Changzhou Zheng2

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1427-1440, 2023, DOI:10.32604/cmes.2023.025414 - 06 February 2023

    Abstract The nonlinear flow properties of Newtonian fluids through crossed fractures are estimated by considering the influences of length, aperture, and surface roughness of fractures. A total of 252 computational runs are performed by creating 36 computational domains, in which the Navier-Stokes equations are solved. The results show that the nonlinear relationship between flow rate and hydraulic gradient follows Forchheimer’s law–based equation. When the hydraulic gradient is small (i.e., 10−6), the streamlines are parallel to the fracture walls, indicating a linear streamline distribution. When the hydraulic gradient is large (i.e., 100), the streamlines are disturbed by a… More >

  • Open Access

    ARTICLE

    Impact of Radiation and Slip on Newtonian Liquid Flow Past a Porous Stretching/Shrinking Sheet in the Presence of Carbon Nanotubes

    U. S. Mahabaleshwar1, T. Anusha1,*, M. EL Ganaoui2, R. Bennacer3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.4, pp. 929-939, 2023, DOI:10.32604/fdmp.2022.021996 - 02 November 2022

    Abstract The impacts of radiation, mass transpiration, and volume fraction of carbon nanotubes on the flow of a Newtonian fluid past a porous stretching/shrinking sheet are investigated. For this purpose, three types of base liquids are considered, namely, water, ethylene glycol and engine oil. Moreover, single and multi-wall carbon nanotubes are examined in the analysis. The overall physical problem is modeled using a system of highly nonlinear partial differential equations, which are then converted into highly nonlinear third order ordinary differential equations via a suitable similarity transformation. These equations are solved analytically along with the corresponding More > Graphic Abstract

    Impact of Radiation and Slip on Newtonian Liquid Flow Past a Porous Stretching/Shrinking Sheet in the Presence of Carbon Nanotubes

  • Open Access

    ARTICLE

    Application of Smoothed Particle Hydrodynamics (SPH) for the Simulation of Flow-Like Landslides on 3D Terrains

    Binghui Cui1,*, Liaojun Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.1, pp. 357-376, 2023, DOI:10.32604/cmes.2022.022309 - 29 September 2022

    Abstract Flow-type landslide is one type of landslide that generally exhibits characteristics of high flow velocities, long jump distances, and poor predictability. Simulation of its propagation process can provide solutions for risk assessment and mitigation design. The smoothed particle hydrodynamics (SPH) method has been successfully applied to the simulation of two-dimensional (2D) and three-dimensional (3D) flow-like landslides. However, the influence of boundary resistance on the whole process of landslide failure is rarely discussed. In this study, a boundary condition considering friction is proposed and integrated into the SPH method, and its accuracy is verified. Moreover, the… More > Graphic Abstract

    Application of Smoothed Particle Hydrodynamics (SPH) for the Simulation of Flow-Like Landslides on 3D Terrains

  • Open Access

    REVIEW

    Numerical Analysis of the Mixed Flow of a Non-Newtonian Fluid over a Stretching Sheet with Thermal Radiation

    Nourhan I. Ghoneim1,*, Ahmed M. Megahed2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.2, pp. 407-419, 2023, DOI:10.32604/fdmp.2022.020508 - 29 August 2022

    Abstract A mathematical model is elaborated for the laminar flow of an Eyring-Powell fluid over a stretching sheet. The considered non-Newtonian fluid has Prandtl number larger than one. The effects of variable fluid properties and heat generation/absorption are also discussed. The balance equations for fluid flow are reduced to a set of ordinary differential equations through a similarity transformation and solved numerically using a Chebyshev spectral scheme. The effect of various parameters on the rate of heat transfer in the thermal boundary regime is investigated, i.e., thermal conductivity, the heat generation/absorption ratio and the mixed convection More >

Displaying 1-10 on page 1 of 28. Per Page