Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (174)
  • Open Access


    A Novel Parallel Computing Confidentiality Scheme Based on Hindmarsh-Rose Model

    Jawad Ahmad1,*, Mimonah Al Qathrady2, Mohammed S. Alshehri3, Yazeed Yasin Ghadi4, Mujeeb Ur Rehman5, Syed Aziz Shah6

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1325-1341, 2023, DOI:10.32604/cmc.2023.040858

    Abstract Due to the inherent insecure nature of the Internet, it is crucial to ensure the secure transmission of image data over this network. Additionally, given the limitations of computers, it becomes even more important to employ efficient and fast image encryption techniques. While 1D chaotic maps offer a practical approach to real-time image encryption, their limited flexibility and increased vulnerability restrict their practical application. In this research, we have utilized a 3D Hindmarsh-Rose model to construct a secure cryptosystem. The randomness of the chaotic map is assessed through standard analysis. The proposed system enhances security by incorporating an increased number… More >

  • Open Access


    Analysis of CLARANS Algorithm for Weather Data Based on Spark

    Jiahao Zhang, Honglin Wang*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2427-2441, 2023, DOI:10.32604/cmc.2023.038462

    Abstract With the rapid development of technology, processing the explosive growth of meteorological data on traditional standalone computing has become increasingly time-consuming, which cannot meet the demands of scientific research and business. Therefore, this paper proposes the implementation of the parallel Clustering Large Application based upon RANdomized Search (CLARANS) clustering algorithm on the Spark cloud computing platform to cluster China’s climate regions using meteorological data from 1988 to 2018. The aim is to address the challenge of applying clustering algorithms to large datasets. In this paper, the morphological similarity distance is adopted as the similarity measurement standard instead of Euclidean distance,… More >

  • Open Access


    An Efficient Solution Strategy for Phase Field Model of Dynamic Fracture Problems Based on Domain Decomposition

    Shourong Hao1, Yongxing Shen1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09336

    Abstract Dynamic fracture is an important class of damage widely present in engineering materials and structures, e.g., high-speed impact and explosion. In recent years, the phase field approach to fracture proposed by Bourdin et al. [1] becomes popular for complicated fracture problems for its ability to simulate crack nucleation, propagation, branching, and merging without extra criteria, and the crack path does not need to be tracked, which makes the implementation straightforward and the calculation efficient. However, one of the major issues of the phase field method is the high computational cost due to the need of a very fine mesh, which… More >

  • Open Access


    MPI Massive Parallelization of Smoothed Particle Hydrodynamics for Simulation of Impact and Explosion Problems

    Jiahao Liu1, Moubin Liu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.010056

    Abstract The dynamic failure process of structures under impact and explosive loading is very common in both military and industrial fields. However, the conventional mesh-based method has some shortcomings, such as large mesh distortion and sliding surface treatment. Some typical phenomena are difficult to be simulated. The smoothed particle hydrodynamics (SPH) method has natural advantages in treating large material deformations in impact and explosion problems [1]. To make the SPH method suitable for the impact and explosion problems, it is also improved by some treatments [2] to avoid inherent stress instability and unphysical oscillation. However, numerical calculations for 3D engineering applications,… More >

  • Open Access


    GPU-Accelerated Numerical Modeling of Hypervelocity Impacts on CFRP Using SPH

    Yao Lu1, Jianyu Chen2, Dianlei Feng3,*, Moubin Liu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.3, pp. 1-2, 2023, DOI:10.32604/icces.2023.010004

    Abstract CFRPs (carbon fiber reinforced plastics), as a kind of fiber-reinforced plastic, present various advantages over traditional materials regarding the specific strength, stiffness, and corrosion resistance. For this reason, CFRPs are widely used in the space industry, like satellites and space stations, which are easily subjected to the HVIs (hypervelocity impacts) threatened by space debris. In order to mitigate the damage of HVIs and protect the spatial structures, it is necessary to predict the HVI process on CFRPs. Smoothed particle hydrodynamics (SPH) method, as a mesh-free particle-based method, has been widely applied for modeling HVI problems due to its special advantages… More >

  • Open Access


    3D Model Encryption Algorithm by Parallel Bidirectional Diffusion and 1D Map with Sin and Logistic Coupling

    Yongsheng Hu*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1819-1838, 2023, DOI:10.32604/csse.2023.040729

    Abstract 3D models are essential in virtual reality, game development, architecture design, engineering drawing, medicine, and more. Compared to digital images, 3D models can provide more realistic visual effects. In recent years, significant progress has been made in the field of digital image encryption, and researchers have developed new algorithms that are more secure and efficient. However, there needs to be more research on 3D model encryption. This paper proposes a new 3D model encryption algorithm, called the 1D map with sin and logistic coupling (1D-MWSLC), because existing digital image encryption algorithms cannot be directly applied to 3D models. Firstly, this… More >

  • Open Access



    Fábio A. Caldasa,*, Paulo M. Coelhob,†

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-8, 2017, DOI:10.5098/hmt.8.32

    Abstract In this paper, Nusselt numbers for a power-law fluid in a fully developed laminar flow between parallel plates with constant, and different, wall heat fluxes in the presence of dissipation effects are presented. The Nusselt numbers values were obtained following two different approaches. One is the “classical” approach, based on a single bulk temperature, and this approach is used in this work to obtain for the first time generic analytical expressions for Nusselt numbers. In the new approach, different bulk temperatures are used for each Nu′ determination, one bulk temperature for each side of the location of the temperature profile… More >

  • Open Access



    Shailendra K. Tiwaria,* , Somashekara Bhata , Krishna K. Mahatob , Bharath B. Manjunathc

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-8, 2018, DOI:10.5098/hmt.10.9

    Abstract This paper presents the design and simulation of a thin film microheater. This can have promising applications in bio-medical analysis, explosive detection, gas sensing, and micro-thrusters. An approach is presented to enhance the thermal uniformity of parallel microheater. The modeling of microheater is done using glass as a substrate material. The analysis is carried out with different resistive material for the heater. To study the response of the microheater to the different supply voltage, substrate thickness, and time interval, finite element simulation is carried out with commercial FEM analysis tool- COMSOL Multiphysics 5.2a. The proposed design in Model 1 have… More >

  • Open Access



    Nidhal Hnaiena , Salwa Marzouka , Lioua Kolsia,b,*, Abdullah A.A.A. Al-Rashedc , Habib Ben Aissiaa , Jacques Jayd

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-11, 2018, DOI:10.5098/hmt.11.8

    Abstract The purpose of the present paper is to numerically investigate two plane turbulent parallel jets using CFD model. A parametric study was carried out to evaluate the simultaneous effect of the nozzle spacing and the velocity ratio on the merge point (MP), the combined points (CP) as well as the upper (UVC) and lower (LVC) vortices centers positions. Results show that the velocity ratio significantly affects twin-parallel jets flow structure. In fact, increasing the velocity ratio moves the MP, CP, UVC and LVC further upstream along the longitudinal direction while deflecting toward the stronger jet along the transverse direction. Due… More >

  • Open Access


    Numerical Investigation of the Multiphase Flow Originating from the Muzzle of Submerged Parallel Guns

    Dongxiao Zhang1, Lin Lu1,*, Xiaobin Qi2,3, Xuepu Yan1, Cisong Gao1, Yanxiao Hu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2707-2728, 2023, DOI:10.32604/fdmp.2023.028641

    Abstract A two-dimensional model, employing a dynamic mesh technology, is used to simulate numerically the transient multiphase flow field produced by two submerged parallel guns. After a grid refinement study ensuring grid independence, five different conditions are considered to assess the evolution of cavitation occurring in proximity to the gun muzzle. The simulation results show that flow interference is enabled when the distance between the parallel barrels is relatively small; accordingly, the generation and evolution of the vapor cavity becomes more complex. By means of the Q criterion for vorticity detection, it is shown that cavitation causes the generation of vorticity… More >

Displaying 11-20 on page 2 of 174. Per Page