Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (67)
  • Open Access

    ARTICLE

    Parameter Sensitivity and Probabilistic Analysis of the Elastic Homogenized Properties for Rubber Filled Polymers

    Marcin Kamiński1,2, Bernd Lauke2

    CMES-Computer Modeling in Engineering & Sciences, Vol.93, No.6, pp. 411-440, 2013, DOI:10.3970/cmes.2013.093.411

    Abstract The main aim in this paper is a computational study devoted to the sensitivity gradients and probabilistic moments of the effective elastic parameters for the rubber-filled polymers. The methodology is based on least squares recovery of the polynomial functions relating the effective tensor components and the given input design/random parameters. All numerical experiments are provided with respect to Young’s moduli of the elastomer constituents. Computational analysis is possible thanks to the application of the Response Function Method, which is enriched in our approach with the weighting procedures implemented according to the Dirac-type distributions. The homogenized elasticity tensor components are derived… More >

  • Open Access

    ARTICLE

    A Three-Dimensional Constitutive Equation And Finite Element Method Implementation for Shape Memory Polymers

    Guanghui Shi1, Qingsheng Yang1,2, Xiaoqiao He3,4, Kim Meow Liew3

    CMES-Computer Modeling in Engineering & Sciences, Vol.90, No.5, pp. 339-358, 2013, DOI:10.3970/cmes.2013.090.339

    Abstract In order to describe the thermomechanical deformation and shape memory effect of shape memory polymers (SMPs), a three-dimensional thermomechanical constitutive model that considers elastic, viscoelastic strain and thermal expansion is proposed for isotropic SMPs. A three-dimensional finite element procedure is developed by implementing the proposed constitutive model into the user material subroutine (UMAT) in ABAQUS program. Numerical examples are used to compare it with existing experimental data in a one dimensional case and to demonstrate the thermomechanical behavior of SMPs with 3D deformation. It is shown that the present constitutive theory and the finite element method can effectively simulate the… More >

  • Open Access

    ARTICLE

    A Geometric Embedding Algorithm for Efficiently Generating Semiflexible Chains in the Molten State

    M. Kröger1, M. Müller2, J. Nievergelt2

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.5, pp. 559-570, 2003, DOI:10.3970/cmes.2003.004.559

    Abstract We present a novel method for generating starting polymer structures for molecular simulations in the dense phase. The work describes the ingredients of an algorithm for the creation of large, dense or diluted amorphous polymeric systems close to equilibrium and provides measures for its quality. The model systems are made of semiflexible (wormlike) repulsive multibead chains. The key feature of the method is its efficiency, in particular for large systems, while approaching given local and global chain characteristics. Its output has been proven to serve as an excellent basis for subsequent off-lattice molecular dynamics computer simulation. By combining chain growing… More >

  • Open Access

    ARTICLE

    Development of a Hyperbranched Fuel Cell Membrane Material for Improved Proton Conductivity

    Leela Rakesh1, Anja Mueller2, Pratik Chhetri1

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.2, pp. 179-202, 2010, DOI:10.3970/fdmp.2010.006.179

    Abstract A new material for proton conducting membrane with a higher proton transport but reduced water transport is being developed. The new material optimizes proton channel formation, this reducing water transport at the same time. Different proton transporting groups along with different gas flowing channels are examined as well. To meet the goals we design, synthesize, and simulate various proton transporting groups using MD techniques for faster optimization, which in turn helps to synthesize and test only promising structures in the laboratory. At the same time, computer modeling is used to improve the fuel cell system at various operating conditions, specifically… More >

  • Open Access

    ARTICLE

    Three Phase Composite Cylinder Assemblage Model for Analyzing the Elastic Behavior of MWCNT-Reinforced Polymers

    Puneet Kumar1,*, J. Srinivas2

    CMC-Computers, Materials & Continua, Vol.54, No.1, pp. 1-20, 2018, DOI:10.3970/cmc.2018.054.001

    Abstract Evolution of computational modeling and simulation has given more emphasis on the research activities related to carbon nanotube (CNT) reinforced polymer composites recently. This paper presents the composite cylinder assemblage (CCA) approach based on continuum mechanics for investigating the elastic properties of a polymer resin reinforced by multi-walled carbon nanotubes (MWCNTs). A three-phase cylindrical representative volume element (RVE) model is employed based on CCA technique to elucidate the effects of inter layers, chirality, interspacing, volume fraction of MWCNT, interphase properties and temperature conditions on the elastic modulus of the composite. The interface region between CNT and polymer matrix is modeled… More >

  • Open Access

    ARTICLE

    Invariant Based Transversely-Isotropic Material and Failure Model for Fiber-Reinforced Polymers

    M. Vogler1, G. Ernst1, R. Rolfes1

    CMC-Computers, Materials & Continua, Vol.16, No.1, pp. 25-50, 2010, DOI:10.3970/cmc.2010.016.025

    Abstract In this article, a constitutive formulation of a transversely-isotropic material and failure model for fiber-reinforced polymers is presented comprising pre-failure material nonlinearities, a novel invariant based quadratic failure criterion (IQC) as well as post failure material softening. The failure surface of the IQ criterion is assumed to take the influence of triaxiality on fracture into account. Further, a distinction between fiber failure and inter-fiber failure is conducted. Material softening is governed by a fracture energy formulation and the introduction of an internal length. The constitutive model is implemented into a programming user interface of the commercial finite element program Abaqus.… More >

  • Open Access

    ARTICLE

    A Phenomenological Model for Desorption in Polymers

    J.A.Ferreira1,2, P. de Oliveira2, P. da Silva3, D. M. G. Comissiong4

    CMC-Computers, Materials & Continua, Vol.13, No.1, pp. 17-48, 2009, DOI:10.3970/cmc.2009.013.017

    Abstract A phenomenological formulation is adopted to investigate desorption in polymers. The speed of the front is studied and the well-posedness of the general model is analyzed. Numerical simulations illustrating the dynamics of the desorption process described by the proposed model are included. More >

Displaying 61-70 on page 7 of 67. Per Page