Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (71)
  • Open Access

    ARTICLE

    Peroxide Treatment of Soy Protein Fibers Followed by Grafting of Poly(methyl acrylate) and Copolymers

    Pushpa Bhardwaj1, Susheel Kalia2,3,*, Amit Kumar1, Hemant Mittal4

    Journal of Renewable Materials, Vol.1, No.4, pp. 302-310, 2013, DOI:10.7569/JRM.2013.634123

    Abstract The objective of the present study is to elucidate the effect of peroxide treatment and graft copolymerization on water absorption behavior of soy protein fi bers in order to make them suitable as a reinforcing material. Grafting of poly(methyl acrylate) and copolymers was successfully carried out on peroxide-treated soy protein fi bers. Different reaction parameters were optimized in order to get maximum percentage grafting. The grafted fi bers were evaluated for water absorption behavior in deionized water. Maximum grafting has been found at 0.219 mol/l of methyl acrylate, 0.0096:0.145 mol/l of FAS:H2O2 , 323 K, and More >

  • Open Access

    ARTICLE

    Thermally Stable Polymers of Cardanol as Char-Forming Additives for Polypropylene

    Weeradech Kiratitanavit1, Sethumadhavan Ravichandran2,Zhiyu Xia1, Jayant Kumar3,4, Ramaswamy Nagarajan1,4,*

    Journal of Renewable Materials, Vol.1, No.4, pp. 289-301, 2013, DOI:10.7569/JRM.2013.634126

    Abstract Globally, certain types of halogenated fl ame retardant additives (FR) are becoming increasingly regulated or banned from being used in polymers. There is an immediate need for alternative non-toxic thermally stable polymers and char-forming additives. Development of non-halogenated FR for the commonly used and highly fl ammable thermoplastics, namely polyolefi ns, is particularly important and challenging. This research explores the possibility of utilizing char-forming compounds based on polymer of cardanol as an additive that can lower the heat release capacity (HRC) when blended with polypropylene (PP). Polycardanol is thermally stable and exhibits moderate HRC upon More >

  • Open Access

    ARTICLE

    Parameter Sensitivity and Probabilistic Analysis of the Elastic Homogenized Properties for Rubber Filled Polymers

    Marcin Kamiński1,2, Bernd Lauke2

    CMES-Computer Modeling in Engineering & Sciences, Vol.93, No.6, pp. 411-440, 2013, DOI:10.3970/cmes.2013.093.411

    Abstract The main aim in this paper is a computational study devoted to the sensitivity gradients and probabilistic moments of the effective elastic parameters for the rubber-filled polymers. The methodology is based on least squares recovery of the polynomial functions relating the effective tensor components and the given input design/random parameters. All numerical experiments are provided with respect to Young’s moduli of the elastomer constituents. Computational analysis is possible thanks to the application of the Response Function Method, which is enriched in our approach with the weighting procedures implemented according to the Dirac-type distributions. The homogenized… More >

  • Open Access

    ARTICLE

    A Three-Dimensional Constitutive Equation And Finite Element Method Implementation for Shape Memory Polymers

    Guanghui Shi1, Qingsheng Yang1,2, Xiaoqiao He3,4, Kim Meow Liew3

    CMES-Computer Modeling in Engineering & Sciences, Vol.90, No.5, pp. 339-358, 2013, DOI:10.3970/cmes.2013.090.339

    Abstract In order to describe the thermomechanical deformation and shape memory effect of shape memory polymers (SMPs), a three-dimensional thermomechanical constitutive model that considers elastic, viscoelastic strain and thermal expansion is proposed for isotropic SMPs. A three-dimensional finite element procedure is developed by implementing the proposed constitutive model into the user material subroutine (UMAT) in ABAQUS program. Numerical examples are used to compare it with existing experimental data in a one dimensional case and to demonstrate the thermomechanical behavior of SMPs with 3D deformation. It is shown that the present constitutive theory and the finite element More >

  • Open Access

    ABSTRACT

    Hybrid simulations of enormous numbers of polymers dispersed in decaying isotropic turbulence

    T. Watanabe, T.Gotoh

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.3, pp. 91-92, 2011, DOI:10.3970/icces.2011.018.091

    Abstract The effects of polymer additives on decaying isotropic turbulence were numerically investigated using a hybrid approach. The approach consisted of a Brownian dynamics simulation with an enormous number of dumbbells and a turbulence DNS with large-scale parallel computations. A reduction of the energy dissipation rate and modification of the kinetic energy spectrum were observed when the reactions of the polymers were incorporated into the fluid motion. We found that results with few polymers and large replicas could approximate those with many polymers and smaller replicas as far as the large-scale statistics were concerned. More >

  • Open Access

    ARTICLE

    Development of a Hyperbranched Fuel Cell Membrane Material for Improved Proton Conductivity

    Leela Rakesh1, Anja Mueller2, Pratik Chhetri1

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.2, pp. 179-202, 2010, DOI:10.3970/fdmp.2010.006.179

    Abstract A new material for proton conducting membrane with a higher proton transport but reduced water transport is being developed. The new material optimizes proton channel formation, this reducing water transport at the same time. Different proton transporting groups along with different gas flowing channels are examined as well. To meet the goals we design, synthesize, and simulate various proton transporting groups using MD techniques for faster optimization, which in turn helps to synthesize and test only promising structures in the laboratory. At the same time, computer modeling is used to improve the fuel cell system More >

  • Open Access

    ARTICLE

    Invariant Based Transversely-Isotropic Material and Failure Model for Fiber-Reinforced Polymers

    M. Vogler1, G. Ernst1, R. Rolfes1

    CMC-Computers, Materials & Continua, Vol.16, No.1, pp. 25-50, 2010, DOI:10.3970/cmc.2010.016.025

    Abstract In this article, a constitutive formulation of a transversely-isotropic material and failure model for fiber-reinforced polymers is presented comprising pre-failure material nonlinearities, a novel invariant based quadratic failure criterion (IQC) as well as post failure material softening. The failure surface of the IQ criterion is assumed to take the influence of triaxiality on fracture into account. Further, a distinction between fiber failure and inter-fiber failure is conducted. Material softening is governed by a fracture energy formulation and the introduction of an internal length. The constitutive model is implemented into a programming user interface of the More >

  • Open Access

    ABSTRACT

    Kinetics of Order-order transitions in block copolymers: Cylinders to spheres

    Rama Bansil1, Minghai Li1, Yongsheng Liu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.13, No.4, pp. 75-76, 2009, DOI:10.3970/icces.2009.013.075

    Abstract Block copolymers are known to form micelles of different shapes in selective solvents that preferentially dissolve one of the constituent blocks. These micellar fluids exhibit various ordered and disordered phases. To gain microscopic insight into the mechanisms involved in the transformation between different phases we use synchrotron-based time-resolved small angle x-ray scattering (SAXS) and coarse-grained discrete Brownian Dynamics simulations. In this talk I will focus on the kinetics of the transformation from the hexagonal packed cylinder (HEX) phase to cubic phases (FCC or BCC). SAXS data was interpreted with a geometrical model for the transformation… More >

  • Open Access

    ARTICLE

    A Phenomenological Model for Desorption in Polymers

    J.A.Ferreira1,2, P. de Oliveira2, P. da Silva3, D. M. G. Comissiong4

    CMC-Computers, Materials & Continua, Vol.13, No.1, pp. 17-48, 2009, DOI:10.3970/cmc.2009.013.017

    Abstract A phenomenological formulation is adopted to investigate desorption in polymers. The speed of the front is studied and the well-posedness of the general model is analyzed. Numerical simulations illustrating the dynamics of the desorption process described by the proposed model are included. More >

  • Open Access

    ABSTRACT

    Computational Simulation of Mechanical Behavior of Semi-Crystalline Polymers with Randomly Distributed Rubber Particles

    M. Uchida1, N. Tada1, Y. Tomita2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.6, No.2, pp. 91-98, 2008, DOI:10.3970/icces.2008.006.091

    Abstract Micro- to mesoscopic deformation behavior of semi-crystalline polymer with randomly distributed rubber particles is evaluated by numerical simulation. In this model, dimension of mesostructure is identified by volume fraction of interface region around the rubber particles. The effects of strain rate and size of mesostructure on macroscopic stress-strain relation and strain distribution in mesoscopic area are discussed. In the earlier stage of deformation, the slope of stress-strain relation changes by rubber particle size while stress in the following deformation is mainly affected by the tensile strain rate. The anisotropic deformation in lamellar oriented interface region More >

Displaying 61-70 on page 7 of 71. Per Page