Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (103)
  • Open Access

    ARTICLE

    Three-Variable Shifted Jacobi Polynomials Approach for Numerically Solving Three-Dimensional Multi-Term Fractional-Order PDEs with Variable Coefficients

    Jiaquan Xie1,3,*, Fuqiang Zhao1,3, Zhibin Yao1,3, Jun Zhang1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.115, No.1, pp. 67-84, 2018, DOI:10.3970/cmes.2018.115.067

    Abstract In this paper, the three-variable shifted Jacobi operational matrix of fractional derivatives is used together with the collocation method for numerical solution of three-dimensional multi-term fractional-order PDEs with variable coefficients. The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations which greatly simplifying the problem. The approximate solutions of nonlinear fractional PDEs with variable coefficients thus obtained by three-variable shifted Jacobi polynomials are compared with the exact solutions. Furthermore some theorems and lemmas are introduced to verify the convergence results of our algorithm. Lastly, More >

  • Open Access

    ARTICLE

    Solving Fractional Integro-Differential Equations by Using Sumudu Transform Method and Hermite Spectral Collocation Method

    Y. A. Amer1, A. M. S. Mahdy1, 2, *, E. S. M. Youssef1

    CMC-Computers, Materials & Continua, Vol.54, No.2, pp. 161-180, 2018, DOI:10.3970/cmc.2018.054.161

    Abstract In this paper we are looking forward to finding the approximate analytical solutions for fractional integro-differential equations by using Sumudu transform method and Hermite spectral collocation method. The fractional derivatives are described in the Caputo sense. The applications related to Sumudu transform method and Hermite spectral collocation method have been developed for differential equations to the extent of access to approximate analytical solutions of fractional integro-differential equations. More >

  • Open Access

    ARTICLE

    Efficient Orbit Propagation of Orbital Elements Using Modified Chebyshev Picard Iteration Method

    J.L. Read1, A. Bani Younes2, J.L. Junkins3

    CMES-Computer Modeling in Engineering & Sciences, Vol.111, No.1, pp. 65-81, 2016, DOI:10.3970/cmes.2016.111.065

    Abstract This paper focuses on propagating perturbed two-body motion using orbital elements combined with a novel integration technique. While previous studies show that Modified Chebyshev Picard Iteration (MCPI) is a powerful tool used to propagate position and velocity, the present results show that using orbital elements to propagate the state vector reduces the number of MCPI iterations and nodes required, which is especially useful for reducing the computation time when including computationally-intensive calculations such as Spherical Harmonic gravity, and it also converges for > 5.5x as many revolutions using a single segment when compared with cartesian… More >

  • Open Access

    ARTICLE

    Enhancements to Modified Chebyshev-Picard Iteration Efficiency for Perturbed Orbit Propagation

    B. Macomber1, A. B. Probe1, R. Woollands1, J. Read1, J. L. Junkins1

    CMES-Computer Modeling in Engineering & Sciences, Vol.111, No.1, pp. 29-64, 2016, DOI:10.3970/cmes.2016.111.029

    Abstract Modified Chebyshev Picard Iteration is an iterative numerical method for solving linear or non-linear ordinary differential equations. In a serial computational environment the method has been shown to compete with, or outperform, current state of practice numerical integrators. This paper presents several improvements to the basic method, designed to further increase the computational efficiency of solving the equations of perturbed orbit propagation. More >

  • Open Access

    ARTICLE

    A New Hybrid Uncertain Analysis Method and its Application to Acoustic Field with Random and Interval Parameters

    Hui Yin1, Dejie Yu1,2, Shengwen Yin1, Baizhan Xia1

    CMES-Computer Modeling in Engineering & Sciences, Vol.109-110, No.3, pp. 221-246, 2015, DOI:10.3970/cmes.2015.109.221

    Abstract This paper presents a new hybrid Chebyshev-perturbation method (HCPM) for the prediction of acoustic field with random and interval parameters. In HCPM, the perturbation method based on the first-order Taylor series that accounts for the random uncertainty is organically integrated with the first-order Chebyshev polynomials that deal with the interval uncertainty; specifically, a random interval function is firstly expanded with the first-order Taylor series by treating the interval variables as constants, and the expressions of the expectation and variance can be obtained by using the random moment method; then the expectation and variance of the More >

  • Open Access

    ARTICLE

    Fast Generation of Smooth Implicit Surface Based on Piecewise Polynomial

    Taku Itoh1, Susumu Nakata2

    CMES-Computer Modeling in Engineering & Sciences, Vol.107, No.3, pp. 187-199, 2015, DOI:10.3970/cmes.2015.107.187

    Abstract To speed up generating a scalar field g(x) based on a piecewise polynomial, a new method for determining field values that are indispensable to generate g(x) has been proposed. In the proposed method, an intermediate for generating g(x) does not required, i.e., the field values can directly be determined from given point data. Numerical experiments show that the computation time for determining the field values by the proposed method is about 10.4–12.7 times less than that of the conventional method. In addition, on the given points, the accuracy of g(x) obtained by using the proposed More >

  • Open Access

    ARTICLE

    Analysis of Symmetry Breaking Bifurcation in Duffing System with Random Parameter

    Ying Zhang1, Lin Du1, Xiaole Yue1, Qun Han1, Tong Fang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.106, No.1, pp. 37-51, 2015, DOI:10.3970/cmes.2015.106.037

    Abstract The symmetry breaking bifurcation (SBB) phenomenon in a deterministic parameter Duffing system (DP-DS) is well known, yet the problem how would SBB phenomenon happen in a Duffing system with random parameter (RP-DS) is still open. For comparison study, the results for DP-DS are summarized at first: in short, SBB in DP-DS is just a transition of response phase trajectories from a single self-symmetric one about the origin into two mutual symmetric once, or vice versa. However, in DP-DS case, the two mutual symmetric phase trajectories are never commutable. In view of every sample of RP-DS… More >

  • Open Access

    ARTICLE

    New Spectral Solutions of Multi-Term Fractional-Order Initial Value ProblemsWith Error Analysis

    W. M. Abd- Elhameed1,2, Y. H. Youssri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.5, pp. 375-398, 2015, DOI:10.3970/cmes.2015.105.375

    Abstract In this paper, a new spectral algorithm for solving linear and nonlinear fractional-order initial value problems is established. The key idea for obtaining the suggested spectral numerical solutions for these equations is actually based on utilizing the ultraspherical wavelets along with applying the collocation method to reduce the fractional differential equation with its initial conditions into a system of linear or nonlinear algebraic equations in the unknown expansion coefficients. The convergence and error analysis of the suggested ultraspherical wavelets expansion are carefully discussed. For the sake of testing the proposed algorithm, some numerical examples are More >

  • Open Access

    ARTICLE

    A Jacobi Spectral Collocation Scheme Based on Operational Matrix for Time-fractional Modified Korteweg-de Vries Equations

    A.H. Bhrawy1,2, E.H. Doha3, S.S. Ezz-Eldien4, M.A. Abdelkawy2

    CMES-Computer Modeling in Engineering & Sciences, Vol.104, No.3, pp. 185-209, 2015, DOI:10.3970/cmes.2015.104.185

    Abstract In this paper, a high accurate numerical approach is investigated for solving the time-fractional linear and nonlinear Korteweg-de Vries (KdV) equations. These equations are the most appropriate and desirable definition for physical modeling. The spectral collocation method and the operational matrix of fractional derivatives are used together with the help of the Gauss-quadrature formula in order to reduce such problem into a problem consists of solving a system of algebraic equations which greatly simplifying the problem. Our approach is based on the shifted Jacobi polynomials and the fractional derivative is described in the sense of More >

  • Open Access

    ARTICLE

    Numerical Study for a Class of Variable Order Fractional Integral-differential Equation in Terms of Bernstein Polynomials

    Jinsheng Wang1, Liqing Liu2, Yiming Chen2, Lechun Liu2, Dayan Liu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.104, No.1, pp. 69-85, 2015, DOI:10.3970/cmes.2015.104.069

    Abstract The aim of this paper is to seek the numerical solution of a class of variable order fractional integral-differential equation in terms of Bernstein polynomials. The fractional derivative is described in the Caputo sense. Four kinds of operational matrixes of Bernstein polynomials are introduced and are utilized to reduce the initial equation to the solution of algebraic equations after dispersing the variable. By solving the algebraic equations, the numerical solutions are acquired. The method in general is easy to implement and yields good results. Numerical examples are provided to demonstrate the validity and applicability of More >

Displaying 61-70 on page 7 of 103. Per Page