Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    ARTICLE

    Uncertainty Analysis of Seepage-Induced Consolidation in a Fractured Porous Medium

    Lingai Guo1, Marwan Fahs2, Hussein Hoteit3, Rui Gao1,*, Qian Shao1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.1, pp. 279-297, 2021, DOI:10.32604/cmes.2021.016619

    Abstract Numerical modeling of seepage-induced consolidation process usually encounters significant uncertainty in the properties of geotechnical materials. Assessing the effect of uncertain parameters on the performance variability of the seepage consolidation model is of critical importance to the simulation and tests of this process. To this end, the uncertainty and sensitivity analyses are performed on a seepage consolidation model in a fractured porous medium using the Bayesian sparse polynomial chaos expansion (SPCE) method. Five uncertain parameters including Young’s modulus, Poisson’s ratio, and the permeability of the porous matrix, the permeability within the fracture, and Biot’s constant are studied. Bayesian SPCE models… More >

  • Open Access

    ARTICLE

    Wave Propagation Model in a Human Long Poroelastic Bone under Effect of Magnetic Field and Rotation

    A. M. Abd-Alla1,*, Hanaa Abu-Zinadah2, S. M. Abo-Dahab3, J. Bouslimi4,5, M. Omri6

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1485-1504, 2021, DOI:10.32604/cmc.2021.012586

    Abstract This article is aimed at describing the way rotation and magnetic field affect the propagation of waves in an infinite poroelastic cylindrical bone. It offers a solution with an exact closed form. The authors got and examined numerically the general frequency equation for poroelastic bone. Moreover, they calculated the frequencies of poroelastic bone for different values of the magnetic field and rotation. Unlike the results of previous studies, the authors noticed little frequency dispersion in the wet bone. The proposed model will be applicable to wide-range parametric projects of bone mechanical response. Examining the vibration of surface waves in rotating… More >

  • Open Access

    ARTICLE

    A Coupled Friction-Poroelasticity Model of Chimneying Shows that Confined Cells Can Mechanically Migrate Without Adhesions

    Solenne Mondésert-Deveraux1, *, Rachele Allena2, Denis Aubry1

    Molecular & Cellular Biomechanics, Vol.15, No.3, pp. 155-176, 2018, DOI: 10.3970/mcb.2018.03053

    Abstract Cell migration is the cornerstone of many biological phenomena such as cancer metastasis, immune response or organogenesis. Adhesion-based motility is the most renown and examined motility mode, but in an adhesion-free confined environment or simply to achieve a higher migration speed, cells can adopt a very interesting bleb-based migration mode called “chimneying”. This mode rests on the sharp synchronization between the active contraction of the cells uropod and the passive friction force between the cell and the confining surface. In this paper, we propose a one dimensional poroelastic model of chimneying which considers the active strains of the cell, but,… More >

  • Open Access

    ARTICLE

    A Fully Coupled Poroelastic Reactive-Transport Model of Cartilage

    Lihai Zhang*, Bruce S. Gardiner*, David W. Smith*, Peter Pivonka*, Alan Grodzinsky

    Molecular & Cellular Biomechanics, Vol.5, No.2, pp. 133-154, 2008, DOI:10.3970/mcb.2008.005.133

    Abstract Cartilage maintains its integrity in a hostile mechanical environment. This task is made more difficult because cartilage has no blood supply, and so nutrients and growth factors need to be transported greater distances than normal to reach cells several millimetres from the cartilage surface. The chondrocytes embedded within the extracellular matrix (ECM) are essential for maintaining the mechanical integrity of the ECM, through a balance of degradation and synthesis of collagen and proteoglycans. A chondrocyte senses various chemical and mechanical signals in its local microenvironment, responding by appropriate adaption of the local ECM. Clearly a 'systems understanding' of cartilage behaviour… More >

  • Open Access

    ARTICLE

    Dynamic Response of Borehole in Poroelastic Medium with Disturbed Zone

    W. Kaewjuea1, T. Senjuntichai2, R.K.N.D. Rajapakse3

    CMES-Computer Modeling in Engineering & Sciences, Vol.101, No.3, pp. 207-228, 2014, DOI:10.3970/cmes.2014.101.207

    Abstract Dynamic response of an infinite cylindrical borehole in a poroelastic medium with an excavation disturbed zone is investigated in this paper. The borehole is subjected to axisymmetric time-harmonic loads and fluid sources applied to its surface, which is either fully permeable or impermeable. The governing equations based on Biot’s poroelastodynamics theory are solved by using two scalar potentials and two vector potentials. The general solutions are then derived through the application of Fourier integral transform with respect to the vertical coordinate. An exact stiffness matrix scheme is established from the derived general solutions to include the excavation disturbed zone. Boundary… More >

  • Open Access

    ARTICLE

    Modelling of the Frequency Response to Dynamic Nanoindentation of Soft Hydrated Anisotropic Materials: Application to Articular Cartilage

    Taffetani M.1, Bertarelli E.1,2, Gottardi R.3,4, Raiteri R.5, Vena P.1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.5, pp. 433-460, 2012, DOI:10.3970/cmes.2012.087.433

    Abstract Dynamic nanoindentation is a novel nanomechanical testing that is being increasingly used to characterize the frequency response of viscoelastic materials and of soft hydrated biological tissues at the micrometric and nanometric length scales. This technique is able to provide more information than those obtained by simple indentation; however, its interpretation is still an open issue for complex materials such as the case of anisotropic biological tissues that generally have a high water content. This work presents a numerical model to characterize the frequency response of poro-elastic tissues subjected to harmonic indentation loading with particular regard to the effect of geometrical… More >

  • Open Access

    ARTICLE

    Wave Propagation in Unsaturated Poroelastic Media: Boundary Integral Formulation and Three-dimensional Fundamental Solution

    P. Maghoul1, B. Gatmiri1,2, D. Duhamel1

    CMES-Computer Modeling in Engineering & Sciences, Vol.78, No.1, pp. 51-76, 2011, DOI:10.3970/cmes.2011.078.051

    Abstract This paper aims at obtaining boundary integral formulations as well as three dimensional(3D) fundamental solutions for unsaturated soils under dynamic loadings for the first time. The boundary integral equations are derived via the use of the weighted residuals method in a way that permits an easy discretization and implementation in a Boundary Element code. Also, the associated 3D fundamental solutions for such deformable porous medium are derived in Laplace transform domain using the method of Hérmander. The derived results are verified analytically by comparison with the previously introduced corresponding fundamental solutions in elastodynamic limiting case. These solutions can be used,… More >

  • Open Access

    ARTICLE

    An Efficient Parallel MLPG Method for Poroelastic Models

    Luca Bergamaschi1,2, ,Ángeles Martínez2, Giorgio Pini2

    CMES-Computer Modeling in Engineering & Sciences, Vol.49, No.3, pp. 191-216, 2009, DOI:10.3970/cmes.2009.049.191

    Abstract A meshless model, based on the Meshless Local Petrov-Galerkin (MLPG) approach, is developed and implemented in parallel for the solution of axi-symmetric poroelastic problems. The parallel code is based on a concurrent construction of the stiffness matrix by the processors and on a parallel preconditioned iterative method of Krylov type for the solution of the resulting linear system. The performance of the code is investigated on a realistic application concerning the prediction of land subsidence above a deep compacting reservoir. The overall code is shown to obtain a very high parallel efficiency (larger than 78% for the solution phase) and… More >

  • Open Access

    ARTICLE

    Fast Identification of Poroelastic Parameters from Indentation Tests

    M.Galli , M.L.Oyen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.48, No.3, pp. 241-270, 2009, DOI:10.3970/cmes.2009.048.241

    Abstract A novel approach is presented for the identification of constitutive parameters of linear poroelastic materials from indentation tests. Load-controlled spherical indentation with a ramp-hold creep profile is considered. The identification approach is based on the normalization of the time-displacement indentation response, in analogy to the well-known one-dimensional consolidation problem. The identification algorithm consists of two nested optimization routines, one in the time-displacement domain and the other in a normalized domain. The procedure is validated by identifying poroelastic parameters from the displacement-time outputs of finite element simulations; the new identification scheme proves both quantitatively reliable and fast. The procedure is also… More >

  • Open Access

    ARTICLE

    Effect of Rotation on the Propagation of Waves in Hollow Poroelastic Circular Cylinder with Magnetic Field

    A.M. Farhan1, 2

    CMC-Computers, Materials & Continua, Vol.53, No.2, pp. 129-156, 2017, DOI:10.3970/cmc.2017.053.133

    Abstract Employing Biot’s theory of wave propagation in liquid saturated porous media, the effect of rotation and magnetic field on wave propagation in a hollow poroelastic circular of infinite extent are investigated. An exact closed form solution is presented. General frequency equations for propagation of poroelastic cylinder are obtained when the boundaries are stress free. The frequencies are calculated for poroelastic cylinder for different values of magnetic field and rotation. Numerical results are given and illustrated graphically. The results indicate that the effect of rotation, and magnetic field are very pronounced. Such a model would be useful in large-scale parametric studies… More >

Displaying 1-10 on page 1 of 10. Per Page