Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Research on the Damage of Porosityand Permeabilitydue to Perforation on Sandstone in the Compaction Zone

    Shifeng Xue1,2, Xiuxing Zhu1,2, Lin Zhang3, Shenghu Zhu4, Guigen Ye1,5

    CMC-Computers, Materials & Continua, Vol.51, No.1, pp. 21-42, 2016, DOI:10.3970/cmc.2016.051.021

    Abstract A perforating hole is a channel through which the oil and gas in a reservoir pass into the production well bore. During the process of perforating due to explosion, the surrounding sandstone will be damaged to a certain extent, which will increase the well bore skin and lead to the decrease of production consequently. In this work a mechanical model of perforating damage is developed to describe the influences of perforating due to explosion on the porosity and permeability of the surrounding sandstone near the compaction zone. Based on this developed model, the important data… More >

  • Open Access

    ARTICLE

    Effect of Porosity and Magnetic Field Dependent Viscosity on Revolving Ferrofluid Flow in the Presence of Stationary Disk

    Anupam Bh,ari1, Vipin Kumar2

    FDMP-Fluid Dynamics & Materials Processing, Vol.10, No.3, pp. 359-375, 2014, DOI:10.3970/fdmp.2014.010.359

    Abstract The purpose of this paper is to study the flow characteristics of a ferrofluid revolving through a porous medium with a magnetic-field-dependent viscosity in the presence of a stationary disk. A Finite Difference Method is employed to discretize the set of nonlinear coupled differential equations involved in the problem. The discretized nonlinear equations, in turn, are solved by a Newton method (using MATLAB) taking the initial guess with the help of a PDE Solver. Results displayed in graphical form are used to assess the effect of the variable viscosity and porosity parameters on the velocity More >

  • Open Access

    ARTICLE

    Effects of the Axial Variations of Porosity and Mineralization on the Elastic Properties of the Human Femoral Neck

    V. Sansalone1,∗, V. Bousson2, S. Naili1, C. Bergot2, F. Peyrin3, J.D. Laredo2, G. Haïat1

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.5, pp. 387-410, 2012, DOI:10.3970/cmes.2012.087.387

    Abstract This paper investigates the effects of the heterogeneous distribution of the Haversian Porosity (HP) and Tissue Mineral Density (TMD) on the elastic coefficients of bone in the human femoral neck. A bone specimen from the inferior femoral neck was obtained from a patient undergoing standard hemiarthroplasty. The specimen was imaged using 3-D synchrotron micro-computed tomography (voxel size of 10.13 mm), leading to the determination of the anatomical distributions of HP and TMD. These experimental data were used to estimate the elastic coefficients of the bone using a three-step homogenization model based on continuum micromechanics: (i)… More >

  • Open Access

    ARTICLE

    Modeling Two Phase Flow in Large Scale Fractured Porous Media with an Extended Multiple Interacting Continua Method

    A.B. Tatomir1,2, A.Szymkiewicz3, H. Class1, R. Helmig1

    CMES-Computer Modeling in Engineering & Sciences, Vol.77, No.2, pp. 81-112, 2011, DOI:10.3970/cmes.2011.077.081

    Abstract We present a two phase flow conceptual model, the corresponding simulator (2pMINC) and a workflow for large-scale fractured reservoirs, based on a continuum fracture approach which uses the multiple interacting continua (MINC) method complemented with an improved upscaling technique. The complex transient behavior of the flow processes in fractured porous media is captured by subgridding the coarse blocks in nested volume elements which have effective properties calculated from the detailed representation of the fracture system. In this way, we keep a physically based approach, preserve the accuracy of the model, avoid the common use of… More >

Displaying 21-30 on page 3 of 24. Per Page