Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access

    ARTICLE

    COMBINED INFLUENCE OF HALL CURRENTS AND JOULE HEATING ON HEMODYNAMIC PERISTALTIC FLOW WITH POROUS MEDIUM THROUGH A VERTICAL TAPERED ASYMMETRIC CHANNEL WITH RADIATION

    S. Ravi Kumar* , S. K. Abzal

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-9, 2017, DOI:10.5098/hmt.9.19

    Abstract The aim of the present attempt is hall currents and joule heating on peristaltic blood flow in porous medium through a vertical tapered asymmetric channel under the influence of radiation. The Mathematical modeling is investigated by utilizing long wavelength and low Reynolds number assumptions. The indicates an appreciable increase in the axial velocity distribution with increase in hall current parameter and porosity parameter whereas the result in axial velocity distribution diminished by increase in magnetic field parameter. The result in pressure gradient reduces by rise in hall current parameter, porosity parameter and volumetric flow rate. The temperature of the fluid… More >

  • Open Access

    ARTICLE

    Experimental Evaluation of Compressive Strength and Gas Permeability of Glass-Powder-Containing Mortar

    Yue Liang, Wenxuan Dai, Wei Chen*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2639-2659, 2023, DOI:10.32604/fdmp.2023.027622

    Abstract Glass powder of various particle sizes (2, 5, 10 and 15 μm) has been assessed as a possible cement substitute for mortars. Different replacement rates of cement (5%, 10%, 15%, and 20%) have been considered for all particle sizes. The accessible porosity, compressive strength, gas permeability and microstructure have been investigated accordingly. The results have shown that adding glass powder up to 20% has a significantly negative effect on the porosity and compressive strength of mortar. The compressive strength initially rises with a 5% replacement and then decreases. Similarly, the gas permeability of the mortar displays a non-monotonic behavior; first, it… More >

  • Open Access

    ARTICLE

    Bending and Free Vibration Analysis of Porous-Functionally-Graded (PFG) Beams Resting on Elastic Foundations

    Lazreg Hadji1,2,*, Fabrice Bernard3, Nafissa Zouatnia4

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.4, pp. 1043-1054, 2023, DOI:10.32604/fdmp.2022.022327

    Abstract The bending and free vibration of porous functionally graded (PFG) beams resting on elastic foundations are analyzed. The material features of the PFG beam are assumed to vary continuously through the thickness according to the volume fraction of components. The foundation medium is also considered to be linear, homogeneous, and isotropic, and modeled using the Winkler-Pasternak law. The hyperbolic shear deformation theory is applied for the kinematic relations, and the equations of motion are obtained using the Hamilton’s principle. An analytical solution is presented accordingly, assuming that the PFG beam is simply supported. Comparisons with the open literature are implemented… More > Graphic Abstract

    Bending and Free Vibration Analysis of Porous-Functionally-Graded (PFG) Beams Resting on Elastic Foundations

  • Open Access

    ARTICLE

    Modeling of Crack Development Associated with Proppant Hydraulic Fracturing in a Clay-Carbonate Oil Deposit

    Sergey Galkin1,*, Ian Savitckii1, Denis Shustov1, Artyom Kukhtinskii1, Boris Osovetsky2, Alexander Votinov3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.2, pp. 273-284, 2023, DOI:10.32604/fdmp.2022.021697

    Abstract Survey and novel research data are used in the present study to classify/identify the lithological type of Verey age reservoirs’ rocks. It is shown how the use of X-ray tomography can clarify the degree of heterogeneity, porosity and permeability of these rocks. These data are then used to elaborate a model of hydraulic fracturing. The resulting software can take into account the properties of proppant and breakdown fluid, thermal reservoir conditions, oil properties, well design data and even the filtration and elastic-mechanical properties of the rocks. Calculations of hydraulic fracturing crack formation are carried out and the results are compared… More > Graphic Abstract

    Modeling of Crack Development Associated with Proppant Hydraulic Fracturing in a Clay-Carbonate Oil Deposit

  • Open Access

    ARTICLE

    Effects of Mineral Admixtures on Chloride Diffusion in Environment-Friendly Coral Aggregate Concrete

    Daguan Huang1,*, Ditao Niu2, Li Su3,*, Hao Zheng2, Qiang Fu2, Yunhe Liu1

    Journal of Renewable Materials, Vol.10, No.12, pp. 3477-3489, 2022, DOI:10.32604/jrm.2022.021282

    Abstract Coral materials can replace concrete aggregates and achieve material self-sufficiency for reducing the construction costs of island projects. This paper studies the effects of different mineral admixtures on the properties of coral aggregate concrete (CAC). The chloride concentration of CAC after different erosion times is measured using the potentiometric method, and the porosity of the CAC is calculated using thermogravimetric and drying methods. The chloride concentration of the CAC presents a two-phases distribution. The peak chloride concentration followed a power function, increasing with the erosion time. The chloride diffusion coefficient of CAC is 7.9%– 37.5% larger than that of ordinary… More >

  • Open Access

    ARTICLE

    A nanostructured look of collagen apatite porosity into human mineralized collagen fibril

    FABIANO BINI1,*, ANDRADA PICA1, ANDREA MARINOZZI2, FRANCO MARINOZZI1

    BIOCELL, Vol.46, No.10, pp. 2225-2229, 2022, DOI:10.32604/biocell.2022.021150

    Abstract Bone tissue is a hierarchical material characterized at nanoscale by the mineralized collagen fibril, a recurring structure mainly composed of apatite minerals, collagen and water. Bone nanostructure has a fundamental role in determining the mechanical behavior of the tissue and its mass transport properties. Diffusion phenomenon allows to maintain an adequate supply of metabolites in the mechanisms of bone remodeling, adaptation and repair. Several analytical and computational models have been developed to analyze and predict bone tissue behavior. However, the fine replication of the natural tissue still represents a challenge. Insights on the structural organization at nanoscale and on the… More >

  • Open Access

    ARTICLE

    Study on Properties of Blue-Brick Masonry Materials for Historical Buildings

    Shaochun Ma1,2,*, Lin Wang1, Peng Bao1,*

    Journal of Renewable Materials, Vol.10, No.7, pp. 1961-1978, 2022, DOI:10.32604/jrm.2022.018755

    Abstract There are a large number of historic buildings which were mainly made of blue-brick masonry in today’s world. However, for the natural and man-made reasons, these historic buildings have been damaged in different degrees. In order to protect historic buildings more scientifically and learn about the preservation state of existing historic buildings, it is necessary to ascertain the material properties of blue brick in historic buildings. The article takes the blue bricks of historical buildings in Kaifeng area of the Central Plains as an example to study. Through the analysis of physical properties, X-ray fluorescence spectroscopy, X-ray diffraction and scanning… More > Graphic Abstract

    Study on Properties of Blue-Brick Masonry Materials for Historical Buildings

  • Open Access

    ARTICLE

    A Discrete Numerical Study of the Effect of the Thickness and the Porosity of the Sand Cushion on the Impact Response Due to the Rockfall

    Song Yuan1, Peng Zhao2,*, Liangpu Li1,*, Xibao Wang1, Jun Liu3, Bo Zhang4

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1683-1698, 2022, DOI:10.32604/cmes.2022.018507

    Abstract The prevention and the reduction of the rockfall are the common measures of the prevention and the reduction of disasters. When the rock-shed resists the impact of the rockfall, the force that acts on the structure consists of the cushion dead load and the impact-induced load, of which the dynamic process of the propagation of the impact-induced load is complex. Therefore, we conducted a numerical study to investigate the impact of the rockfall. Considering the highly discrete characteristic of the sand, we developed a numerical model on the basis of the discrete element method (DEM). The numerical model, which simulation… More >

  • Open Access

    ARTICLE

    Reducing Occupational Noise Propagated from Centrifugal Fan through Dissipative Silencers: A Field Study

    Ali Safari Variani1, Masoumeh Ghorbanide1, Sajad Zare2, Saeid Ahmadi1,*, Zahra Hashemi3

    Sound & Vibration, Vol.55, No.1, pp. 31-41, 2021, DOI:10.32604/sv.2021.08930

    Abstract Acoustic performance of dissipative silencer was evaluated to determine the effectiveness of perforated duct porosity and absorbent material density in reducing occupational noise exposure propagated from centrifugal fan. Design charts were applied to predict noise reduction and length of a dissipative silencer. Dissipative silencers with various punched duct porosity (14%, 30% and 40%) and sound absorbent density (80 Kg/m3, 120 Kg/m3, and 140 Kg/m3) were designed and fabricated. According to ISO9612 and ISO11820, noise level was measured before and after installing all nine test silencers at fixed workstations around the discharge side of a centrifugal fan in a manufacturing plant.… More >

  • Open Access

    ARTICLE

    Mesoscopic-Scale Numerical Investigation Including the Inuence of Process Parameters on LPBF Multi-Layer Multi-Path Formation

    Liu Cao*

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.1, pp. 5-23, 2021, DOI:10.32604/cmes.2021.014693

    Abstract As a typical laser additive manufacturing technology, laser powder bed fusion (LPBF) has achieved demonstration applications in aerospace, biomedical and other fields. However, how to select process parameters quickly and reasonably is still the main concern of LPBF production. In order to quantitatively analyze the inuence of different process parameters (laser power, scanning speed, hatch space and layer thickness) on the LPBF process, the multi-layer and multi-path forming process of LPBF was predicted based on the open-source discrete element method framework Yade and the open-source finite volume method framework OpenFOAM. Based on the design of experiments method, a four-factor three-level… More >

Displaying 1-10 on page 1 of 23. Per Page