Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    PROCEEDINGS

    Fracture Behavior of Periodic Porous Structures by Phase Field Method

    Yuxuan Ying1, Wei Huang1,*, Yu-E Ma1, Fan Peng1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-3, 2023, DOI:10.32604/icces.2023.010572

    Abstract Intensive dynamic loadings are the main threats to the structural damage of protective structures and inner equipment, which has attracted a lot of attention in the field of advance impulsive resistance. Nanofluidic liquid foam (NLF) has become a novel and efficient energy absorption system due to its reusable energy absorption, ultra-high load transfer, and high energy absorption ratio. In order to solve the current problem that the energy absorption mechanism of NLF is still unclear, this paper conducted a systematic experimental study on the dynamic compression and energy absorption behaviours of NLF. The quasi-static cyclic compression experiments with different liquid… More >

  • Open Access

    ARTICLE

    Optimal Design of Porous Media in Solar Vapor Generators by Carbon Fiber Bundles

    Mohammad Yaghoub Abdollahzadeh Jamalabadi, Jinxiang Xi*

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 65-79, 2023, DOI:10.32604/fhmt.2023.042613

    Abstract As a means of harvesting solar energy for water treatment, solar-driven vapor generation is becoming more appealing. Due to their entangled fibrous networks and high surface area, fibers can be used as building blocks to generate water vapor. In this paper, using a two-dimensional fiber bundle model, we studied the generation of solar vapor based on the fiber height, distance between fibers, and input sun radiation. The performance of solar absorption system was also evaluated by evaluating thermal and water management. Results showed a constant increase in solar vapor generation with an increasing fiber height and decreasing inter-fiber distance. However,… More > Graphic Abstract

    Optimal Design of Porous Media in Solar Vapor Generators by Carbon Fiber Bundles

  • Open Access

    ARTICLE

    Multi-Material Topology Optimization for Spatial-Varying Porous Structures

    Chengwan Zhang1, Kai Long1,*, Zhuo Chen1,2, Xiaoyu Yang1, Feiyu Lu1, Jinhua Zhang3, Zunyi Duan4

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 369-390, 2024, DOI:10.32604/cmes.2023.029876

    Abstract This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials. The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass, as well as the local volume fraction of all phases. The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function, avoiding the parameter dependence in the conventional aggregation process. Furthermore, the local volume percentage can be precisely satisfied. The effects including the global mass bound, the influence radius and local volume percentage… More >

Displaying 1-10 on page 1 of 3. Per Page