Open Access iconOpen Access

ARTICLE

Optimal Design of Porous Media in Solar Vapor Generators by Carbon Fiber Bundles

Mohammad Yaghoub Abdollahzadeh Jamalabadi, Jinxiang Xi*

Department of Biomedical Engineering, University of Massachusetts, Lowell, MA, USA

* Corresponding Author: Jinxiang Xi. Email: email

(This article belongs to this Special Issue: Advances in Drying Technologies)

Frontiers in Heat and Mass Transfer 2023, 21, 65-79. https://doi.org/10.32604/fhmt.2023.042613

Abstract

As a means of harvesting solar energy for water treatment, solar-driven vapor generation is becoming more appealing. Due to their entangled fibrous networks and high surface area, fibers can be used as building blocks to generate water vapor. In this paper, using a two-dimensional fiber bundle model, we studied the generation of solar vapor based on the fiber height, distance between fibers, and input sun radiation. The performance of solar absorption system was also evaluated by evaluating thermal and water management. Results showed a constant increase in solar vapor generation with an increasing fiber height and decreasing inter-fiber distance. However, the gain rate of using taller and more densely packed fiber bundles dwindled quickly. On the other hand, a shorter fiber had a higher evaporation rate per fiber height. The distance between fibers had a nonlinear effect on the fiber bundle evaporation rate. A new fiber bundle design was recommended with a fiber height of 15–20 mm and an inter-fiber distance of 1.5 mm. The results of this study can provide guidelines for future fiber bundle designs with increased efficiency, reduced cost, and versatile applications (i.e., desalination, water purification, and power generation).

Graphical Abstract

Optimal Design of Porous Media in Solar Vapor Generators by Carbon Fiber Bundles

Keywords


Cite This Article

Yaghoub, M., Xi, J. (2023). Optimal Design of Porous Media in Solar Vapor Generators by Carbon Fiber Bundles. Frontiers in Heat and Mass Transfer, 21(1), 65–79.



cc This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1530

    View

  • 299

    Download

  • 2

    Like

Share Link