Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    ARTICLE

    Smart Grid Security Framework for Data Transmissions with Adaptive Practices Using Machine Learning Algorithm

    Shitharth Selvarajan1,2,3,*, Hariprasath Manoharan4, Taher Al-Shehari5, Hussain Alsalman6, Taha Alfakih7

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4339-4369, 2025, DOI:10.32604/cmc.2025.056100 - 06 March 2025

    Abstract This research presents an analysis of smart grid units to enhance connected units’ security during data transmissions. The major advantage of the proposed method is that the system model encompasses multiple aspects such as network flow monitoring, data expansion, control association, throughput, and losses. In addition, all the above-mentioned aspects are carried out with neural networks and adaptive optimizations to enhance the operation of smart grid networks. Moreover, the quantitative analysis of the optimization algorithm is discussed concerning two case studies, thereby achieving early convergence at reduced complexities. The suggested method ensures that each communication More >

  • Open Access

    ARTICLE

    Thermal Performance of Entropy-Optimized Tri-Hybrid Nanofluid Flow within the Context of Two Distinct Non-Newtonian Models: Application of Solar-Powered Residential Buildings

    Ahmed Mohamed Galal1,2, Adebowale Martins Obalalu3, Akintayo Oladimeji Akindele4, Umair Khan5,6, Abdulazeez Adebayo Usman7, Olalekan Adebayo Olayemi8, Najiyah Safwa Khashi’ie9,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 3089-3113, 2025, DOI:10.32604/cmes.2025.061296 - 03 March 2025

    Abstract The need for efficient thermal energy systems has gained significant attention due to the growing global concern about renewable energy resources, particularly in residential buildings. One of the biggest challenges in this area is capturing and converting solar energy at maximum efficiency. This requires the use of strong materials and advanced fluids to enhance conversion efficiency while minimizing energy losses. Despite extensive research on thermal energy systems, there remains a limited understanding of how the combined effects of thermal radiation, irreversibility processes, and advanced heat flux models contribute to optimizing solar power performance in residential… More > Graphic Abstract

    Thermal Performance of Entropy-Optimized Tri-Hybrid Nanofluid Flow within the Context of Two Distinct Non-Newtonian Models: Application of Solar-Powered Residential Buildings

  • Open Access

    ARTICLE

    Doubly-Fed Pumped Storage Units Participation in Frequency Regulation Control Strategy for New Energy Power Systems Based on Model Predictive Control

    Yuanxiang Luo*, Linshu Cai, Nan Zhang

    Energy Engineering, Vol.122, No.2, pp. 765-783, 2025, DOI:10.32604/ee.2024.058426 - 31 January 2025

    Abstract Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability, and the system frequency stability is facing unprecedented challenges. In order to solve rapid frequency fluctuation caused by new energy units, this paper proposes a new energy power system frequency regulation strategy with multiple units including the doubly-fed pumped storage unit (DFPSU). Firstly, based on the model predictive control (MPC) theory, the state space equations are established by considering the operating characteristics of the units and the dynamic behavior of the system; secondly, the proportional-differential control link is introduced to… More > Graphic Abstract

    Doubly-Fed Pumped Storage Units Participation in Frequency Regulation Control Strategy for New Energy Power Systems Based on Model Predictive Control

  • Open Access

    ARTICLE

    Seasonal Short-Term Load Forecasting for Power Systems Based on Modal Decomposition and Feature-Fusion Multi-Algorithm Hybrid Neural Network Model

    Jiachang Liu1,*, Zhengwei Huang2, Junfeng Xiang1, Lu Liu1, Manlin Hu1

    Energy Engineering, Vol.121, No.11, pp. 3461-3486, 2024, DOI:10.32604/ee.2024.054514 - 21 October 2024

    Abstract To enhance the refinement of load decomposition in power systems and fully leverage seasonal change information to further improve prediction performance, this paper proposes a seasonal short-term load combination prediction model based on modal decomposition and a feature-fusion multi-algorithm hybrid neural network model. Specifically, the characteristics of load components are analyzed for different seasons, and the corresponding models are established. First, the improved complete ensemble empirical modal decomposition with adaptive noise (ICEEMDAN) method is employed to decompose the system load for all four seasons, and the new sequence is obtained through reconstruction based on the… More >

  • Open Access

    ARTICLE

    Novel Static Security and Stability Control of Power Systems Based on Artificial Emotional Lazy Q-Learning

    Tao Bao*, Xiyuan Ma, Zhuohuan Li, Duotong Yang, Pengyu Wang, Changcheng Zhou

    Energy Engineering, Vol.121, No.6, pp. 1713-1737, 2024, DOI:10.32604/ee.2023.046150 - 21 May 2024

    Abstract The stability problem of power grids has become increasingly serious in recent years as the size of novel power systems increases. In order to improve and ensure the stable operation of the novel power system, this study proposes an artificial emotional lazy Q-learning method, which combines artificial emotion, lazy learning, and reinforcement learning for static security and stability analysis of power systems. Moreover, this study compares the analysis results of the proposed method with those of the small disturbance method for a stand-alone power system and verifies that the proposed lazy Q-learning method is able More >

  • Open Access

    ARTICLE

    Reliability-Based Model for Incomplete Preventive Replacement Maintenance of Photovoltaic Power Systems

    Wei Chen, Ming Li*, Tingting Pei, Cunyu Sun, Huan Lei

    Energy Engineering, Vol.121, No.1, pp. 125-144, 2024, DOI:10.32604/ee.2023.042812 - 27 December 2023

    Abstract At present, the operation and maintenance of photovoltaic power generation systems mainly comprise regular maintenance, breakdown maintenance, and condition-based maintenance, which is very likely to lead to over- or under-repair of equipment. Therefore, a preventive maintenance and replacement strategy for PV power generation systems based on reliability as a constraint is proposed. First, a hybrid failure function with a decreasing service age factor and an increasing failure rate factor is introduced to describe the deterioration of PV power generation equipment, and the equipment is replaced when its reliability drops to the replacement threshold in the… More >

  • Open Access

    ARTICLE

    A Data Driven Security Correction Method for Power Systems with UPFC

    Qun Li, Ningyu Zhang*, Jianhua Zhou, Xinyao Zhu, Peng Li

    Energy Engineering, Vol.120, No.6, pp. 1485-1502, 2023, DOI:10.32604/ee.2023.022856 - 03 April 2023

    Abstract The access of unified power flow controllers (UPFC) has changed the structure and operation mode of power grids all across the world, and it has brought severe challenges to the traditional real-time calculation of security correction based on traditional models. Considering the limitation of computational efficiency regarding complex, physical models, a data-driven power system security correction method with UPFC is, in this paper, proposed. Based on the complex mapping relationship between the operation state data and the security correction strategy, a two-stage deep neural network (DNN) learning framework is proposed, which divides the offline training… More >

  • Open Access

    ARTICLE

    Research on Evaluation of Multi-Timescale Flexibility and Energy Storage Deployment for the High-Penetration Renewable Energy of Power Systems

    Hongliang Wang1, Jiahua Hu1, Danhuang Dong1, Cenfeng Wang1, Feixia Tang2, Yizheng Wang1, Changsen Feng2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 1137-1158, 2023, DOI:10.32604/cmes.2022.021965 - 31 August 2022

    Abstract With the rapid and wide deployment of renewable energy, the operations of the power system are facing greater challenges when dispatching flexible resources to keep power balance. The output power of renewable energy is uncertain, and thus flexible regulation for the power balance is highly demanded. Considering the multi-timescale output characteristics of renewable energy, a flexibility evaluation method based on multi-scale morphological decomposition and a multi-timescale energy storage deployment model based on bi-level decision-making are proposed in this paper. Through the multi-timescale decomposition algorithm on the basis of mathematical morphology, the multi-timescale components are separated More >

  • Open Access

    ARTICLE

    Frequency Control Approach and Load Forecasting Assessment for Wind Systems

    K. Sukanya*, P. Vijayakumar

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 971-982, 2023, DOI:10.32604/iasc.2023.028047 - 06 June 2022

    Abstract Frequency deviation has to be controlled in power generation units when there are fluctuations in system frequency. With several renewable energy sources, wind energy forecasting is majorly focused in this work which is a tough task due to its variations and uncontrollable nature. Whenever there is a mismatch between generation and demand, the frequency deviation may arise from the actual frequency 50 Hz (in India). To mitigate the frequency deviation issue, it is necessary to develop an effective technique for better frequency control in wind energy systems. In this work, heuristic Fuzzy Logic Based Controller… More >

  • Open Access

    ARTICLE

    State Estimation of Regional Power Systems with Source-Load Two-Terminal Uncertainties

    Ziwei Jiang1, Shuaibing Li1,*, Xiping Ma2, Xingmin Li2, Yongqiang Kang1, Hongwei Li3, Haiying Dong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.1, pp. 295-317, 2022, DOI:10.32604/cmes.2022.019996 - 02 June 2022

    Abstract

    The development and utilization of large-scale distributed power generation and the increase of impact loads represented by electric locomotives and new energy electric vehicles have brought great challenges to the stable operation of the regional power grid. To improve the prediction accuracy of power systems with source-load two-terminal uncertainties, an adaptive cubature Kalman filter algorithm based on improved initial noise covariance matrix Q0 is proposed in this paper. In the algorithm, the Q0 is used to offset the modeling error, and solves the problem of large voltage amplitude and phase fluctuation of the source-load two-terminal uncertain systems.

    More >

Displaying 1-10 on page 1 of 15. Per Page