Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access


    Multi-Modal Military Event Extraction Based on Knowledge Fusion

    Yuyuan Xiang, Yangli Jia*, Xiangliang Zhang, Zhenling Zhang

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 97-114, 2023, DOI:10.32604/cmc.2023.040751

    Abstract Event extraction stands as a significant endeavor within the realm of information extraction, aspiring to automatically extract structured event information from vast volumes of unstructured text. Extracting event elements from multi-modal data remains a challenging task due to the presence of a large number of images and overlapping event elements in the data. Although researchers have proposed various methods to accomplish this task, most existing event extraction models cannot address these challenges because they are only applicable to text scenarios. To solve the above issues, this paper proposes a multi-modal event extraction method based on… More >

  • Open Access


    Robust Deep Learning Model for Black Fungus Detection Based on Gabor Filter and Transfer Learning

    Esraa Hassan1, Fatma M. Talaat1, Samah Adel2, Samir Abdelrazek3, Ahsan Aziz4, Yunyoung Nam4,*, Nora El-Rashidy1

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1507-1525, 2023, DOI:10.32604/csse.2023.037493

    Abstract Black fungus is a rare and dangerous mycology that usually affects the brain and lungs and could be life-threatening in diabetic cases. Recently, some COVID-19 survivors, especially those with co-morbid diseases, have been susceptible to black fungus. Therefore, recovered COVID-19 patients should seek medical support when they notice mucormycosis symptoms. This paper proposes a novel ensemble deep-learning model that includes three pre-trained models: reset (50), VGG (19), and Inception. Our approach is medically intuitive and efficient compared to the traditional deep learning models. An image dataset was aggregated from various resources and divided into two More >

  • Open Access


    Health Monitoring of Dry Clutch System Using Deep Learning Approach

    Ganjikunta Chakrapani, V. Sugumaran*

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1513-1530, 2023, DOI:10.32604/iasc.2023.034597

    Abstract Clutch is one of the most significant components in automobiles. To improve passenger safety, reliability and economy of automobiles, advanced supervision and fault diagnostics are required. Condition Monitoring is one of the key divisions that can be used to track the reliability of clutch and allied components. The state of the clutch elements can be monitored with the help of vibration signals which contain valuable information required for classification. Specific drawbacks of traditional fault diagnosis techniques like high reliability on human intelligence and the requirement of professional expertise, have made researchers look for intelligent fault More >

  • Open Access


    Intelligent Deep Convolutional Neural Network Based Object Detection Model for Visually Challenged People

    S. Kiruthika Devi1, Amani Abdulrahman Albraikan2, Fahd N. Al-Wesabi3, Mohamed K. Nour4, Ahmed Ashour5, Anwer Mustafa Hilal6,*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3191-3207, 2023, DOI:10.32604/csse.2023.036980

    Abstract Artificial Intelligence (AI) and Computer Vision (CV) advancements have led to many useful methodologies in recent years, particularly to help visually-challenged people. Object detection includes a variety of challenges, for example, handling multiple class images, images that get augmented when captured by a camera and so on. The test images include all these variants as well. These detection models alert them about their surroundings when they want to walk independently. This study compares four CNN-based pre-trained models: Residual Network (ResNet-50), Inception v3, Dense Convolutional Network (DenseNet-121), and SqueezeNet, predominantly used in image recognition applications. Based… More >

  • Open Access


    Attenuate Class Imbalance Problem for Pneumonia Diagnosis Using Ensemble Parallel Stacked Pre-Trained Models

    Aswathy Ravikumar, Harini Sriraman*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 891-909, 2023, DOI:10.32604/cmc.2023.035848

    Abstract Pneumonia is an acute lung infection that has caused many fatalities globally. Radiologists often employ chest X-rays to identify pneumonia since they are presently the most effective imaging method for this purpose. Computer-aided diagnosis of pneumonia using deep learning techniques is widely used due to its effectiveness and performance. In the proposed method, the Synthetic Minority Oversampling Technique (SMOTE) approach is used to eliminate the class imbalance in the X-ray dataset. To compensate for the paucity of accessible data, pre-trained transfer learning is used, and an ensemble Convolutional Neural Network (CNN) model is developed. The More >

  • Open Access


    Efficient Grad-Cam-Based Model for COVID-19 Classification and Detection

    Saleh Albahli1,*, Ghulam Nabi Ahmad Hassan Yar2,3

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2743-2757, 2023, DOI:10.32604/csse.2023.024463

    Abstract Corona Virus (COVID-19) is a novel virus that crossed an animal-human barrier and emerged in Wuhan, China. Until now it has affected more than 119 million people. Detection of COVID-19 is a critical task and due to a large number of patients, a shortage of doctors has occurred for its detection. In this paper, a model has been suggested that not only detects the COVID-19 using X-ray and CT-Scan images but also shows the affected areas. Three classes have been defined; COVID-19, normal, and Pneumonia for X-ray images. For CT-Scan images, 2 classes have been… More >

  • Open Access


    Embedding Extraction for Arabic Text Using the AraBERT Model

    Amira Hamed Abo-Elghit1,*, Taher Hamza1, Aya Al-Zoghby2

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1967-1994, 2022, DOI:10.32604/cmc.2022.025353

    Abstract Nowadays, we can use the multi-task learning approach to train a machine-learning algorithm to learn multiple related tasks instead of training it to solve a single task. In this work, we propose an algorithm for estimating textual similarity scores and then use these scores in multiple tasks such as text ranking, essay grading, and question answering systems. We used several vectorization schemes to represent the Arabic texts in the SemEval2017-task3-subtask-D dataset. The used schemes include lexical-based similarity features, frequency-based features, and pre-trained model-based features. Also, we used contextual-based embedding models such as Arabic Bidirectional Encoder… More >

  • Open Access


    A Classification–Detection Approach of COVID-19 Based on Chest X-ray and CT by Using Keras Pre-Trained Deep Learning Models

    Xing Deng1,2, Haijian Shao1,2,*, Liang Shi3, Xia Wang4,5, Tongling Xie6

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.2, pp. 579-596, 2020, DOI:10.32604/cmes.2020.011920

    Abstract The Coronavirus Disease 2019 (COVID-19) is wreaking havoc around the world, bring out that the enormous pressure on national health and medical staff systems. One of the most effective and critical steps in the fight against COVID-19, is to examine the patient’s lungs based on the Chest X-ray and CT generated by radiation imaging. In this paper, five keras-related deep learning models: ResNet50, InceptionResNetV2, Xception, transfer learning and pre-trained VGGNet16 is applied to formulate an classification–detection approaches of COVID-19. Two benchmark methods SVM (Support Vector Machine), CNN (Convolutional Neural Networks) are provided to compare with More >

Displaying 1-10 on page 1 of 8. Per Page