Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (117)
  • Open Access

    ARTICLE

    Residential Electricity Classification Method Based On Cloud Computing Platform and Random Forest

    Ming Li1, Zhong Fang2, Wanwan Cao1, Yong Ma1,*, Shang Wu1, Yang Guo1, Yu Xue3, Romany F. Mansour4

    Computer Systems Science and Engineering, Vol.38, No.1, pp. 39-46, 2021, DOI:10.32604/csse.2021.016189 - 01 April 2021

    Abstract With the rapid development and popularization of new-generation technologies such as cloud computing, big data, and artificial intelligence, the construction of smart grids has become more diversified. Accurate quick reading and classification of the electricity consumption of residential users can provide a more in-depth perception of the actual power consumption of residents, which is essential to ensure the normal operation of the power system, energy management and planning. Based on the distributed architecture of cloud computing, this paper designs an improved random forest residential electricity classification method. It uses the unique out-of-bag error of random More >

  • Open Access

    ARTICLE

    Click through Rate Effectiveness Prediction on Mobile Ads Using Extreme Gradient Boosting

    AlAli Moneera, AlQahtani Maram, AlJuried Azizah, Taghareed AlOnizan, Dalia Alboqaytah, Nida Aslam*, Irfan Ullah Khan

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1681-1696, 2021, DOI:10.32604/cmc.2020.013466 - 26 November 2020

    Abstract Online advertisements have a significant influence over the success or failure of your business. Therefore, it is important to somehow measure the impact of your advertisement before uploading it online, and this is can be done by calculating the Click Through Rate (CTR). Unfortunately, this method is not eco-friendly, since you have to gather the clicks from users then compute the CTR. This is where CTR prediction come in handy. Advertisement CTR prediction relies on the users’ log regarding click information data. Accurate prediction of CTR is a challenging and critical process for e-advertising platforms… More >

  • Open Access

    ARTICLE

    Anomaly Classification Using Genetic Algorithm-Based Random Forest Model for Network Attack Detection

    Adel Assiri*

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 767-778, 2021, DOI:10.32604/cmc.2020.013813 - 30 October 2020

    Abstract Anomaly classification based on network traffic features is an important task to monitor and detect network intrusion attacks. Network-based intrusion detection systems (NIDSs) using machine learning (ML) methods are effective tools for protecting network infrastructures and services from unpredictable and unseen attacks. Among several ML methods, random forest (RF) is a robust method that can be used in ML-based network intrusion detection solutions. However, the minimum number of instances for each split and the number of trees in the forest are two key parameters of RF that can affect classification accuracy. Therefore, optimal parameter selection… More >

  • Open Access

    ARTICLE

    Cartographie des surfaces pastorales à l’aide des données Sentinel 2 L3A et des données ouvertes

    Promesses et réalités

    Urcel Kalenga Tshingomba1,2, Magali Jouven2, Lucile Sautot2 , Imad Shaqura2, Maguelonne Teisseire1

    Revue Internationale de Géomatique, Vol.30, No.2, pp. 245-277, 2020, DOI:10.3166/rig.2021.00112

    Abstract Dans cet article, les auteurs expérimentent une démarche permettant de produire une cartographie cohérente de l’occupation des sols des surfaces des parcours en zones périméditerranéennes françaises représentées par les régions Occitanie et Provence-AlpesCôte d’Azur. Quatre différentes sources de données sont utilisées : l’occupation des sols millésime OSO (OSO), le Registre parcellaire graphique (RPG), la BD-Forêt V.2.0 et les données satellites Sentinel 2 L3A. Le RPG de 2019 et la BD-Forêt actualisée en 2018 ont été utilisés comme principale source de données de référence pour l’entraînement des modèles en vue de classifier les objets OSO 2019… More >

  • Open Access

    ARTICLE

    Random Forests Algorithm Based Duplicate Detection in On-Site Programming Big Data Environment

    Qianqian Li1, Meng Li2, Lei Guo3,*, Zhen Zhang4

    Journal of Information Hiding and Privacy Protection, Vol.2, No.4, pp. 199-205, 2020, DOI:10.32604/jihpp.2020.016299 - 07 January 2021

    Abstract On-site programming big data refers to the massive data generated in the process of software development with the characteristics of real-time, complexity and high-difficulty for processing. Therefore, data cleaning is essential for on-site programming big data. Duplicate data detection is an important step in data cleaning, which can save storage resources and enhance data consistency. Due to the insufficiency in traditional Sorted Neighborhood Method (SNM) and the difficulty of high-dimensional data detection, an optimized algorithm based on random forests with the dynamic and adaptive window size is proposed. The efficiency of the algorithm can be More >

  • Open Access

    ARTICLE

    Prediction of Permeability Using Random Forest and Genetic Algorithm Model

    Junhui Wang1, Wanzi Yan1, Zhijun Wan1,*, Yi Wang2,*, Jiakun Lv1, Aiping Zhou3

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.3, pp. 1135-1157, 2020, DOI:10.32604/cmes.2020.014313 - 15 December 2020

    Abstract Precise recovery of Coalbed Methane (CBM) based on transparent reconstruction of geological conditions is a branch of intelligent mining. The process of permeability reconstruction, ranging from data perception to real-time data visualization, is applicable to disaster risk warning and intelligent decision-making on gas drainage. In this study, a machine learning method integrating the Random Forest (RF) and the Genetic Algorithm (GA) was established for permeability prediction in the Xishan Coalfield based on Uniaxial Compressive Strength (UCS), effective stress, temperature and gas pressure. A total of 50 sets of data collected by a self-developed apparatus were… More >

  • Open Access

    ARTICLE

    Reliability Analysis Based on Optimization Random Forest Model and MCMC

    Fan Yang1,2,3,*, Jianwei Ren1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.2, pp. 801-814, 2020, DOI:10.32604/cmes.2020.08889 - 12 October 2020

    Abstract Based on the rapid simulation of Markov Chain on samples in failure region, a novel method of reliability analysis combining Monte Carlo Markov Chain (MCMC) with random forest algorithm was proposed. Firstly, a series of samples distributing around limit state function are generated by MCMC. Then, the samples were taken as training data to establish the random forest model. Afterwards, Monte Carlo simulation was used to evaluate the failure probability. Finally, examples demonstrate the proposed method possesses higher computational efficiency and accuracy. More >

  • Open Access

    ARTICLE

    MOOC Learner’s Final Grade Prediction Based on an Improved Random Forests Method

    Yuqing Yang1, 3, Peng Fu2, *, Xiaojiang Yang1, 4, Hong Hong5, Dequn Zhou1

    CMC-Computers, Materials & Continua, Vol.65, No.3, pp. 2413-2423, 2020, DOI:10.32604/cmc.2020.011881 - 16 September 2020

    Abstract Massive Open Online Course (MOOC) has become a popular way of online learning used across the world by millions of people. Meanwhile, a vast amount of information has been collected from the MOOC learners and institutions. Based on the educational data, a lot of researches have been investigated for the prediction of the MOOC learner’s final grade. However, there are still two problems in this research field. The first problem is how to select the most proper features to improve the prediction accuracy, and the second problem is how to use or modify the data… More >

  • Open Access

    ARTICLE

    Roman Urdu News Headline Classification Empowered with Machine Learning

    Rizwan Ali Naqvi1, Muhammad Adnan Khan2, *, Nauman Malik2, Shazia Saqib2, Tahir Alyas2, Dildar Hussain3

    CMC-Computers, Materials & Continua, Vol.65, No.2, pp. 1221-1236, 2020, DOI:10.32604/cmc.2020.011686 - 20 August 2020

    Abstract Roman Urdu has been used for text messaging over the Internet for years especially in Indo-Pak Subcontinent. Persons from the subcontinent may speak the same Urdu language but they might be using different scripts for writing. The communication using the Roman characters, which are used in the script of Urdu language on social media, is now considered the most typical standard of communication in an Indian landmass that makes it an expensive information supply. English Text classification is a solved problem but there have been only a few efforts to examine the rich information supply… More >

  • Open Access

    ARTICLE

    Classification Algorithm Optimization Based on Triple-GAN

    Kun Fang1, 2, Jianquan Ouyang1, *

    Journal on Artificial Intelligence, Vol.2, No.1, pp. 1-15, 2020, DOI:10.32604/jai.2020.09738 - 15 July 2020

    Abstract Generating an Adversarial network (GAN) has shown great development prospects in image generation and semi-supervised learning and has evolved into TripleGAN. However, there are still two problems that need to be solved in Triple-GAN: based on the KL divergence distribution structure, gradients are easy to disappear and training instability occurs. Since Triple-GAN tags the samples manually, the manual marking workload is too large. Marked uneven and so on. This article builds on this improved Triple-GAN model (Improved Triple-GAN), which uses Random Forests to classify real samples, automate tagging of leaf nodes, and use Least Squares More >

Displaying 101-110 on page 11 of 117. Per Page