Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (557)
  • Open Access

    ARTICLE

    Feature Selection for Activity Recognition from Smartphone Accelerometer Data

    Juan C. Quiroza, Amit Banerjeeb, Sergiu M. Dascaluc, Sian Lun Laua

    Intelligent Automation & Soft Computing, Vol.24, No.4, pp. 785-793, 2018, DOI:10.1080/10798587.2017.1342400

    Abstract We use the public Human Activity Recognition Using Smartphones (HARUS) data-set to investigate and identify the most informative features for determining the physical activity performed by a user based on smartphone accelerometer and gyroscope data. The HARUS data-set includes 561 time domain and frequency domain features extracted from sensor readings collected from a smartphone carried by 30 users while performing specific activities. We compare the performance of a decision tree, support vector machines, Naive Bayes, multilayer perceptron, and bagging. We report the various classification performances of these algorithms for subject independent cases. Our results show More >

  • Open Access

    ARTICLE

    Multi-phase Oil Tank Recognition for High Resolution Remote Sensing Images

    Changjiang Liu1, Xuling Wu2, Bing Mo1, Yi Zhang3

    Intelligent Automation & Soft Computing, Vol.24, No.3, pp. 671-678, 2018, DOI:10.31209/2018.100000033

    Abstract With continuing commercialization of remote sensing satellites, the high resolution remote sensing image has been increasingly used in various fields of our life. However, processing technology of high resolution remote sensing images is still a tough problem. How to extract useful information from the massive information in high resolution remote sensing images is significant to the subsequent process. A multi-phase oil tank recognition of remote sensing images, namely coarse detection and artificial neural network (ANN) recognition, is proposed. The experimental results of algorithms presented in this paper show that the proposed processing technology is reliable More >

  • Open Access

    ARTICLE

    Highly Accurate Recognition of Handwritten Arabic Decimal Numbers Based on a Self-Organizing Maps Approach

    Amin Alqudah1,2, Hussein R. Al-Zoubi2, Mahmood A. Al-Khassaweneh2,3, Mohammed Al-Qodah1

    Intelligent Automation & Soft Computing, Vol.24, No.3, pp. 493-505, 2018, DOI:10.31209/2018.100000005

    Abstract Handwritten numeral recognition is one of the most popular fields of research in automation because it is used in many applications. Indeed, automation has continually received substantial attention from researchers. Therefore, great efforts have been made to devise accurate recognition methods with high recognition ratios. In this paper, we propose a method for integrating the correlation coefficient with a Self-Organizing Maps (SOM)-based technique to recognize offline handwritten Arabic decimal digits. The simulation results show very high recognition rates compared with the rates achieved by other existing methods. More >

  • Open Access

    ARTICLE

    Gender Recognition Based on Computer Vision System

    Li-Hong Juanga, Ming-Ni Wub, Shin-An Linb

    Intelligent Automation & Soft Computing, Vol.24, No.2, pp. 249-256, 2018, DOI:10.1080/10798587.2016.1272777

    Abstract Detecting human gender from complex background, illumination variations and objects under computer vision system is very difficult but important for an adaptive information service. In this paper, a preliminary design and some experimental results of gender recognition will be presented from the walking movement that utilizes the gait-energy image (GEI) with denoised energy image (DEI) pre-processing as a machine learning support vector machine (SVM) classifier to train and extract its characteristics. The results show that the proposed method can adopt some characteristic values and the accuracy can reach up to 100% gender recognition rate under More >

  • Open Access

    ARTICLE

    Speech-Music-Noise Discrimination in Sound Indexing of Multimedia Documents

    Lamia Bouafif1, Noureddine Ellouze2

    Sound & Vibration, Vol.52, No.6, pp. 2-10, 2018, DOI:10.32604/sv.2018.02410

    Abstract Sound indexing and segmentation of digital documents especially in the internet and digital libraries are very useful to simplify and to accelerate the multimedia document retrieval. We can imagine that we can extract multimedia files not only by keywords but also by speech semantic contents. The main difficulty of this operation is the parameterization and modelling of the sound track and the discrimination of the speech, music and noise segments. In this paper, we will present a Speech/Music/Noise indexing interface designed for audio discrimination in multimedia documents. The program uses a statistical method based on More >

  • Open Access

    ARTICLE

    Image Recognition of Breast Tumor Proliferation Level Based on Convolution Neural Network

    Junhao Yang1, Chunxiao Chen1,*, Qingyang Zang1, Jianfei Li1

    Molecular & Cellular Biomechanics, Vol.15, No.4, pp. 203-214, 2018, DOI:10.32604/mcb.2018.03824

    Abstract Pathological slide is increasingly applied in the diagnosis of breast tumors despite the issues of large amount of data, slow viewing and high subjectivity. To overcome these problems, a micrograph recognition method based on convolutional neural network is proposed for pathological slide of breast tumor. Combined with multi-channel threshold and watershed segmentation, a sample database including single cell, adhesive cell and invalid cell was established. Then, the convolution neural network with six layers is constructed, which has ability to classify the stained breast tumor cells with accuracy of more than 90%, and evaluate the proliferation More >

  • Open Access

    ARTICLE

    A Method for Improving CNN-Based Image Recognition Using DCGAN

    Wei Fang1,2, Feihong Zhang1,*, Victor S. Sheng3, Yewen Ding1

    CMC-Computers, Materials & Continua, Vol.57, No.1, pp. 167-178, 2018, DOI:10.32604/cmc.2018.02356

    Abstract Image recognition has always been a hot research topic in the scientific community and industry. The emergence of convolutional neural networks(CNN) has made this technology turned into research focus on the field of computer vision, especially in image recognition. But it makes the recognition result largely dependent on the number and quality of training samples. Recently, DCGAN has become a frontier method for generating images, sounds, and videos. In this paper, DCGAN is used to generate sample that is difficult to collect and proposed an efficient design method of generating model. We combine DCGAN with More >

  • Open Access

    ARTICLE

    Improved VGG Model for Road Traffic Sign Recognition

    Shuren Zhou1,2,*, Wenlong Liang1,2, Junguo Li1,2, Jeong-Uk Kim3

    CMC-Computers, Materials & Continua, Vol.57, No.1, pp. 11-24, 2018, DOI:10.32604/cmc.2018.02617

    Abstract Road traffic sign recognition is an important task in intelligent transportation system. Convolutional neural networks (CNNs) have achieved a breakthrough in computer vision tasks and made great success in traffic sign classification. In this paper, it presents a road traffic sign recognition algorithm based on a convolutional neural network. In natural scenes, traffic signs are disturbed by factors such as illumination, occlusion, missing and deformation, and the accuracy of recognition decreases, this paper proposes a model called Improved VGG (IVGG) inspired by VGG model. The IVGG model includes 9 layers, compared with the original VGG More >

  • Open Access

    ARTICLE

    Rare Bird Sparse Recognition via Part-Based Gist Feature Fusion and Regularized Intraclass Dictionary Learning

    Jixin Liu1,*, Ning Sun1,2, Xiaofei Li1, Guang Han1, Haigen Yang1, Quansen Sun3

    CMC-Computers, Materials & Continua, Vol.55, No.3, pp. 435-446, 2018, DOI:10.3970/cmc.2018.02177

    Abstract Rare bird has long been considered an important in the field of airport security, biological conservation, environmental monitoring, and so on. With the development and popularization of IOT-based video surveillance, all day and weather unattended bird monitoring becomes possible. However, the current mainstream bird recognition methods are mostly based on deep learning. These will be appropriate for big data applications, but the training sample size for rare bird is usually very short. Therefore, this paper presents a new sparse recognition model via improved part detection and our previous dictionary learning. There are two achievements in More >

  • Open Access

    ARTICLE

    The effect of an electronic health record–based tool on abnormal pediatric blood pressure recognition

    Sarah A. Twichell1, Corinna J. Rea1, Patrice Melvin2, Andrew J. Capraro1, Joshua C. Mandel1, Michael A. Ferguson1, Daniel J. Nigrin1, Kenneth D. Mandl1, Dionne Graham2, Justin P. Zachariah3

    Congenital Heart Disease, Vol.12, No.4, pp. 484-490, 2017, DOI:10.1111/chd.12469

    Abstract Background: Recognition of high blood pressure (BP) in children is poor, partly due to the need to compute age-sex-height referenced percentiles. This study examined the change in abnormal BP recognition before versus after the introduction of an electronic health record (EHR) app designed to calculate BP percentiles with a training lecture.
    Methods and results: Clinical data were extracted on all ambulatory, non-urgent encounters for children 3–18 years old seen in primary care, endocrinology, cardiology, or nephrology clinics at an urban, academic hospital in the year before and the year after app introduction. Outpatients with at least 1… More >

Displaying 541-550 on page 55 of 557. Per Page