Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (628)
  • Open Access

    ARTICLE

    A Self-Supervised Hybrid Similarity Framework for Underwater Coral Species Classification

    Yu-Shiuan Tsai*, Zhen-Rong Wu, Jian-Zhi Liu

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3431-3457, 2025, DOI:10.32604/cmc.2025.066509 - 03 July 2025

    Abstract Few-shot learning has emerged as a crucial technique for coral species classification, addressing the challenge of limited labeled data in underwater environments. This study introduces an optimized few-shot learning model that enhances classification accuracy while minimizing reliance on extensive data collection. The proposed model integrates a hybrid similarity measure combining Euclidean distance and cosine similarity, effectively capturing both feature magnitude and directional relationships. This approach achieves a notable accuracy of 71.8% under a 5-way 5-shot evaluation, outperforming state-of-the-art models such as Prototypical Networks, FEAT, and ESPT by up to 10%. Notably, the model demonstrates high… More >

  • Open Access

    ARTICLE

    Adversarial Perturbation for Sensor Data Anonymization: Balancing Privacy and Utility

    Tatsuhito Hasegawa#,*, Kyosuke Fujino#

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2429-2454, 2025, DOI:10.32604/cmc.2025.066270 - 03 July 2025

    Abstract Recent advances in wearable devices have enabled large-scale collection of sensor data across healthcare, sports, and other domains but this has also raised critical privacy concerns, especially under tightening regulations such as the General Data Protection Regulation (GDPR), which explicitly restrict the processing of data that can re-identify individuals. Although existing anonymization approaches such as the Anonymizing AutoEncoder (AAE) can reduce the risk of re-identification, they often introduce substantial waveform distortions and fail to preserve information beyond a single classification task (e.g., human activity recognition). This study proposes a novel sensor data anonymization method based… More >

  • Open Access

    ARTICLE

    Prediction of Assembly Intent for Human-Robot Collaboration Based on Video Analytics and Hidden Markov Model

    Jing Qu1, Yanmei Li1,2, Changrong Liu1, Wen Wang1, Weiping Fu1,3,*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3787-3810, 2025, DOI:10.32604/cmc.2025.065895 - 03 July 2025

    Abstract Despite the gradual transformation of traditional manufacturing by the Human-Robot Collaboration Assembly (HRCA), challenges remain in the robot’s ability to understand and predict human assembly intentions. This study aims to enhance the robot’s comprehension and prediction capabilities of operator assembly intentions by capturing and analyzing operator behavior and movements. We propose a video feature extraction method based on the Temporal Shift Module Network (TSM-ResNet50) to extract spatiotemporal features from assembly videos and differentiate various assembly actions using feature differences between video frames. Furthermore, we construct an action recognition and segmentation model based on the Refined-Multi-Scale… More >

  • Open Access

    ARTICLE

    Research on Crop Image Classification and Recognition Based on Improved HRNet

    Min Ji*, Shucheng Yang

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3075-3103, 2025, DOI:10.32604/cmc.2025.064166 - 03 July 2025

    Abstract In agricultural production, crop images are commonly used for the classification and identification of various crops. However, several challenges arise, including low image clarity, elevated noise levels, low accuracy, and poor robustness of existing classification models. To address these issues, this research proposes an innovative crop image classification model named Lap-FEHRNet, which integrates a Laplacian Pyramid Super Resolution Network (LapSRN) with a feature enhancement high-resolution network based on attention mechanisms (FEHRNet). To mitigate noise interference, this research incorporates the LapSRN network, which utilizes a Laplacian pyramid structure to extract multi-level feature details from low-resolution images… More >

  • Open Access

    ARTICLE

    IoT-Based Real-Time Medical-Related Human Activity Recognition Using Skeletons and Multi-Stage Deep Learning for Healthcare

    Subrata Kumer Paul1,2, Abu Saleh Musa Miah3,4, Rakhi Rani Paul1,2, Md. Ekramul Hamid2, Jungpil Shin4,*, Md Abdur Rahim5

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2513-2530, 2025, DOI:10.32604/cmc.2025.063563 - 03 July 2025

    Abstract The Internet of Things (IoT) and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients. Recognizing Medical-Related Human Activities (MRHA) is pivotal for healthcare systems, particularly for identifying actions critical to patient well-being. However, challenges such as high computational demands, low accuracy, and limited adaptability persist in Human Motion Recognition (HMR). While some studies have integrated HMR with IoT for real-time healthcare applications, limited research has focused on recognizing MRHA as essential for effective patient monitoring. This study proposes a novel HMR method tailored for MRHA detection, leveraging multi-stage deep… More >

  • Open Access

    ARTICLE

    A Convolutional Neural Network Based Optical Character Recognition for Purely Handwritten Characters and Digits

    Syed Atir Raza1,2, Muhammad Shoaib Farooq1, Uzma Farooq3, Hanen Karamti 4, Tahir Khurshaid5,*, Imran Ashraf6,*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3149-3173, 2025, DOI:10.32604/cmc.2025.063255 - 03 July 2025

    Abstract Urdu, a prominent subcontinental language, serves as a versatile means of communication. However, its handwritten expressions present challenges for optical character recognition (OCR). While various OCR techniques have been proposed, most of them focus on recognizing printed Urdu characters and digits. To the best of our knowledge, very little research has focused solely on Urdu pure handwriting recognition, and the results of such proposed methods are often inadequate. In this study, we introduce a novel approach to recognizing Urdu pure handwritten digits and characters using Convolutional Neural Networks (CNN). Our proposed method utilizes convolutional layers… More >

  • Open Access

    ARTICLE

    Video-Based Human Activity Recognition Using Hybrid Deep Learning Model

    Jungpil Shin1,*, Md. Al Mehedi Hasan2, Md. Maniruzzaman3, Satoshi Nishimura1, Sultan Alfarhood4

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3615-3638, 2025, DOI:10.32604/cmes.2025.064588 - 30 June 2025

    Abstract Activity recognition is a challenging topic in the field of computer vision that has various applications, including surveillance systems, industrial automation, and human-computer interaction. Today, the demand for automation has greatly increased across industries worldwide. Real-time detection requires edge devices with limited computational time. This study proposes a novel hybrid deep learning system for human activity recognition (HAR), aiming to enhance the recognition accuracy and reduce the computational time. The proposed system combines a pre-trained image classification model with a sequence analysis model. First, the dataset was divided into a training set (70%), validation set… More > Graphic Abstract

    Video-Based Human Activity Recognition Using Hybrid Deep Learning Model

  • Open Access

    ARTICLE

    Determination of Favorable Factors for Cloud IP Recognition Technology

    Yuanyuan Ma1, Cunzhi Hou1, Ang Chen1, Jinghui Zhang1, Ruixia Jin2, Ruixiang Li3,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1437-1456, 2025, DOI:10.32604/cmc.2025.064523 - 09 June 2025

    Abstract Identifying cloud IP usage scenarios is critical for cybersecurity applications, yet existing machine learning methods rely heavily on numerous features, resulting in high complexity and low interpretability. To address these issues, this paper proposes an approach to identify cloud IPs from the perspective of network attributes. We employ data mining and crowdsourced collection strategies to gather IP addresses from various usage scenarios, which including cloud IPs and non-cloud IPs. On this basis, we establish a cloud IP identification feature set that includes attributes such as Autonomous System Number (ASN) and organization information. By analyzing the… More >

  • Open Access

    REVIEW

    A Comprehensive Review of Face Detection/Recognition Algorithms and Competitive Datasets to Optimize Machine Vision

    Mahmood Ul Haq1, Muhammad Athar Javed Sethi1, Sadique Ahmad2, Naveed Ahmad3, Muhammad Shahid Anwar4,*, Alpamis Kutlimuratov5

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1-24, 2025, DOI:10.32604/cmc.2025.063341 - 09 June 2025

    Abstract Face recognition has emerged as one of the most prominent applications of image analysis and understanding, gaining considerable attention in recent years. This growing interest is driven by two key factors: its extensive applications in law enforcement and the commercial domain, and the rapid advancement of practical technologies. Despite the significant advancements, modern recognition algorithms still struggle in real-world conditions such as varying lighting conditions, occlusion, and diverse facial postures. In such scenarios, human perception is still well above the capabilities of present technology. Using the systematic mapping study, this paper presents an in-depth review More >

  • Open Access

    ARTICLE

    A Pneumonia Recognition Model Based on Multiscale Attention Improved EfficientNetV2

    Zhigao Zeng1, Jun Liu1, Bing Zheng2, Shengqiu Yi1, Xinpan Yuan1, Qiang Liu1,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 513-536, 2025, DOI:10.32604/cmc.2025.063257 - 09 June 2025

    Abstract To solve the problems of complex lesion region morphology, blurred edges, and limited hardware resources for deploying the recognition model in pneumonia image recognition, an improved EfficientNetV2 pneumonia recognition model based on multiscale attention is proposed. First, the number of main module stacks of the model is reduced to avoid overfitting, while the dilated convolution is introduced in the first convolutional layer to expand the receptive field of the model; second, a redesigned improved mobile inverted bottleneck convolution (IMBConv) module is proposed, in which GSConv is introduced to enhance the model’s attention to inter-channel information,… More >

Displaying 1-10 on page 1 of 628. Per Page