Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (76)
  • Open Access

    ARTICLE

    Transformer-Based Cloud Detection Method for High-Resolution Remote Sensing Imagery

    Haotang Tan1, Song Sun2,*, Tian Cheng3, Xiyuan Shu2

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 661-678, 2024, DOI:10.32604/cmc.2024.052208

    Abstract Cloud detection from satellite and drone imagery is crucial for applications such as weather forecasting and environmental monitoring. Addressing the limitations of conventional convolutional neural networks, we propose an innovative transformer-based method. This method leverages transformers, which are adept at processing data sequences, to enhance cloud detection accuracy. Additionally, we introduce a Cyclic Refinement Architecture that improves the resolution and quality of feature extraction, thereby aiding in the retention of critical details often lost during cloud detection. Our extensive experimental validation shows that our approach significantly outperforms established models, excelling in high-resolution feature extraction and More >

  • Open Access

    ARTICLE

    Optimized Binary Neural Networks for Road Anomaly Detection: A TinyML Approach on Edge Devices

    Amna Khatoon1, Weixing Wang1,*, Asad Ullah2, Limin Li3,*, Mengfei Wang1

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 527-546, 2024, DOI:10.32604/cmc.2024.051147

    Abstract Integrating Tiny Machine Learning (TinyML) with edge computing in remotely sensed images enhances the capabilities of road anomaly detection on a broader level. Constrained devices efficiently implement a Binary Neural Network (BNN) for road feature extraction, utilizing quantization and compression through a pruning strategy. The modifications resulted in a 28-fold decrease in memory usage and a 25% enhancement in inference speed while only experiencing a 2.5% decrease in accuracy. It showcases its superiority over conventional detection algorithms in different road image scenarios. Although constrained by computer resources and training datasets, our results indicate opportunities for More >

  • Open Access

    REVIEW

    An Integrated Analysis of Yield Prediction Models: A Comprehensive Review of Advancements and Challenges

    Nidhi Parashar1, Prashant Johri1, Arfat Ahmad Khan5, Nitin Gaur1, Seifedine Kadry2,3,4,*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 389-425, 2024, DOI:10.32604/cmc.2024.050240

    Abstract The growing global requirement for food and the need for sustainable farming in an era of a changing climate and scarce resources have inspired substantial crop yield prediction research. Deep learning (DL) and machine learning (ML) models effectively deal with such challenges. This research paper comprehensively analyses recent advancements in crop yield prediction from January 2016 to March 2024. In addition, it analyses the effectiveness of various input parameters considered in crop yield prediction models. We conducted an in-depth search and gathered studies that employed crop modeling and AI-based methods to predict crop yield. The… More >

  • Open Access

    ARTICLE

    Advancements in Remote Sensing Image Dehazing: Introducing URA-Net with Multi-Scale Dense Feature Fusion Clusters and Gated Jump Connection

    Hongchi Liu1, Xing Deng1,*, Haijian Shao1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2397-2424, 2024, DOI:10.32604/cmes.2024.049737

    Abstract The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle, profoundly impeding their effective utilization across various domains. Dehazing methodologies have emerged as pivotal components of image preprocessing, fostering an improvement in the quality of remote sensing imagery. This enhancement renders remote sensing data more indispensable, thereby enhancing the accuracy of target identification. Conventional defogging techniques based on simplistic atmospheric degradation models have proven inadequate for mitigating non-uniform haze within remotely sensed images. In response to this challenge, a novel UNet Residual Attention Network (URA-Net) is proposed. This paradigmatic approach… More > Graphic Abstract

    Advancements in Remote Sensing Image Dehazing: Introducing URA-Net with Multi-Scale Dense Feature Fusion Clusters and Gated Jump Connection

  • Open Access

    ARTICLE

    Support Vector Machine (SVM) and Object Based Classification in Earth Linear Features Extraction: A Comparison

    Siti Aekbal Salleh1,2,*, Nafisah Khalid1, Natasha Danny6, Nurul Ain Mohd. Zaki2,3, Mustafa Ustuner4, Zulkiflee Abd Latif1,2, Vladimir Foronda5

    Revue Internationale de Géomatique, Vol.33, pp. 183-199, 2024, DOI:10.32604/rig.2024.050723

    Abstract Due to the spectral and spatial properties of pervious and impervious surfaces, image classification and information extraction in detailed, small-scale mapping of urban surface materials is quite difficult and complex. Emerging methods and innovations in image classification have centred on object-based classification techniques and various segmentation techniques, which are fundamental to this approach. Consequently, the purpose of this study is to determine which classification method is most suitable for extracting linear features in terms of techniques and performance by comparing two classification methods, pixel-based approach and object-based approach, using WorldView-2 satellite imagery to specifically highlight… More > Graphic Abstract

    Support Vector Machine (SVM) and Object Based Classification in Earth Linear Features Extraction: A Comparison

  • Open Access

    ARTICLE

    Fine-Grained Ship Recognition Based on Visible and Near-Infrared Multimodal Remote Sensing Images: Dataset, Methodology and Evaluation

    Shiwen Song, Rui Zhang, Min Hu*, Feiyao Huang

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5243-5271, 2024, DOI:10.32604/cmc.2024.050879

    Abstract Fine-grained recognition of ships based on remote sensing images is crucial to safeguarding maritime rights and interests and maintaining national security. Currently, with the emergence of massive high-resolution multi-modality images, the use of multi-modality images for fine-grained recognition has become a promising technology. Fine-grained recognition of multi-modality images imposes higher requirements on the dataset samples. The key to the problem is how to extract and fuse the complementary features of multi-modality images to obtain more discriminative fusion features. The attention mechanism helps the model to pinpoint the key information in the image, resulting in a… More >

  • Open Access

    ARTICLE

    Probability-Enhanced Anchor-Free Detector for Remote-Sensing Object Detection

    Chengcheng Fan1,2,*, Zhiruo Fang3

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4925-4943, 2024, DOI:10.32604/cmc.2024.049710

    Abstract Anchor-free object-detection methods achieve a significant advancement in field of computer vision, particularly in the realm of real-time inferences. However, in remote sensing object detection, anchor-free methods often lack of capability in separating the foreground and background. This paper proposes an anchor-free method named probability-enhanced anchor-free detector (ProEnDet) for remote sensing object detection. First, a weighted bidirectional feature pyramid is used for feature extraction. Second, we introduce probability enhancement to strengthen the classification of the object’s foreground and background. The detector uses the logarithm likelihood as the final score to improve the classification of the More >

  • Open Access

    ARTICLE

    YOLO-MFD: Remote Sensing Image Object Detection with Multi-Scale Fusion Dynamic Head

    Zhongyuan Zhang, Wenqiu Zhu*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2547-2563, 2024, DOI:10.32604/cmc.2024.048755

    Abstract Remote sensing imagery, due to its high altitude, presents inherent challenges characterized by multiple scales, limited target areas, and intricate backgrounds. These inherent traits often lead to increased miss and false detection rates when applying object recognition algorithms tailored for remote sensing imagery. Additionally, these complexities contribute to inaccuracies in target localization and hinder precise target categorization. This paper addresses these challenges by proposing a solution: The YOLO-MFD model (YOLO-MFD: Remote Sensing Image Object Detection with Multi-scale Fusion Dynamic Head). Before presenting our method, we delve into the prevalent issues faced in remote sensing imagery… More >

  • Open Access

    ARTICLE

    Development of Spectral Features for Monitoring Rice Bacterial Leaf Blight Disease Using Broad-Band Remote Sensing Systems

    Jingcheng Zhang1, Xingjian Zhou1, Dong Shen1, Qimeng Yu1, Lin Yuan2,*, Yingying Dong3

    Phyton-International Journal of Experimental Botany, Vol.93, No.4, pp. 745-762, 2024, DOI:10.32604/phyton.2024.049734

    Abstract As an important rice disease, rice bacterial leaf blight (RBLB, caused by the bacterium Xanthomonas oryzae pv. oryzae), has become widespread in east China in recent years. Significant losses in rice yield occurred as a result of the disease’s epidemic, making it imperative to monitor RBLB at a large scale. With the development of remote sensing technology, the broad-band sensors equipped with red-edge channels over multiple spatial resolutions offer numerous available data for large-scale monitoring of rice diseases. However, RBLB is characterized by rapid dispersal under suitable conditions, making it difficult to track the disease at… More >

  • Open Access

    ARTICLE

    CrossFormer Embedding DeepLabv3+ for Remote Sensing Images Semantic Segmentation

    Qixiang Tong, Zhipeng Zhu, Min Zhang, Kerui Cao, Haihua Xing*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1353-1375, 2024, DOI:10.32604/cmc.2024.049187

    Abstract High-resolution remote sensing image segmentation is a challenging task. In urban remote sensing, the presence of occlusions and shadows often results in blurred or invisible object boundaries, thereby increasing the difficulty of segmentation. In this paper, an improved network with a cross-region self-attention mechanism for multi-scale features based on DeepLabv3+ is designed to address the difficulties of small object segmentation and blurred target edge segmentation. First, we use CrossFormer as the backbone feature extraction network to achieve the interaction between large- and small-scale features, and establish self-attention associations between features at both large and small… More >

Displaying 1-10 on page 1 of 76. Per Page