Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31)
  • Open Access

    ARTICLE

    Learning Vector Quantization-Based Fuzzy Rules Oversampling Method

    Jiqiang Chen, Ranran Han, Dongqing Zhang, Litao Ma*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5067-5082, 2024, DOI:10.32604/cmc.2024.051494

    Abstract Imbalanced datasets are common in practical applications, and oversampling methods using fuzzy rules have been shown to enhance the classification performance of imbalanced data by taking into account the relationship between data attributes. However, the creation of fuzzy rules typically depends on expert knowledge, which may not fully leverage the label information in training data and may be subjective. To address this issue, a novel fuzzy rule oversampling approach is developed based on the learning vector quantization (LVQ) algorithm. In this method, the label information of the training data is utilized to determine the antecedent… More >

  • Open Access

    ARTICLE

    Density Clustering Algorithm Based on KD-Tree and Voting Rules

    Hui Du, Zhiyuan Hu*, Depeng Lu, Jingrui Liu

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3239-3259, 2024, DOI:10.32604/cmc.2024.046314

    Abstract Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets with uneven density. Additionally, they incur substantial computational costs when applied to high-dimensional data due to calculating similarity matrices. To alleviate these issues, we employ the KD-Tree to partition the dataset and compute the K-nearest neighbors (KNN) density for each point, thereby avoiding the computation of similarity matrices. Moreover, we apply the rules of voting elections, treating each data point as a voter and casting a vote for the point with the highest density among its KNN. By utilizing the vote counts More >

  • Open Access

    ARTICLE

    Improved STN Models and Heuristic Rules for Cooperative Scheduling in Automated Container Terminals

    Hongyan Xia, Jin Zhu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1637-1661, 2024, DOI:10.32604/cmes.2023.029576

    Abstract Improving the cooperative scheduling efficiency of equipment is the key for automated container terminals to cope with the development trend of large-scale ships. In order to improve the solution efficiency of the existing space-time network (STN) model for the cooperative scheduling problem of yard cranes (YCs) and automated guided vehicles (AGVs) and extend its application scenarios, two improved STN models are proposed. The flow balance constraints in the original model are decomposed, and the trajectory constraints of YCs and AGVs are added to acquire the model STN_A. The coupling constraint in STN_A is updated, and… More >

  • Open Access

    ARTICLE

    High Utility Periodic Frequent Pattern Mining in Multiple Sequences

    Chien-Ming Chen1, Zhenzhou Zhang1, Jimmy Ming-Tai Wu1, Kuruva Lakshmanna2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 733-759, 2023, DOI:10.32604/cmes.2023.027463

    Abstract Periodic pattern mining has become a popular research subject in recent years; this approach involves the discovery of frequently recurring patterns in a transaction sequence. However, previous algorithms for periodic pattern mining have ignored the utility (profit, value) of patterns. Additionally, these algorithms only identify periodic patterns in a single sequence. However, identifying patterns of high utility that are common to a set of sequences is more valuable. In several fields, identifying high-utility periodic frequent patterns in multiple sequences is important. In this study, an efficient algorithm called MHUPFPS was proposed to identify such patterns. More >

  • Open Access

    ARTICLE

    Rules Mining-Based Gene Expression Programming for the Multi-Skill Resource Constrained Project Scheduling Problem

    Min Hu1,2,3, Zhimin Chen4, Yuan Xia4, Liping Zhang1,2,3,*, Qiuhua Tang1,2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2815-2840, 2023, DOI:10.32604/cmes.2023.027146

    Abstract The multi-skill resource-constrained project scheduling problem (MS-RCPSP) is a significant management science problem that extends from the resource-constrained project scheduling problem (RCPSP) and is integrated with a real project and production environment. To solve MS-RCPSP, it is an efficient method to use dispatching rules combined with a parallel scheduling mechanism to generate a scheduling scheme. This paper proposes an improved gene expression programming (IGEP) approach to explore newly dispatching rules that can broadly solve MS-RCPSP. A new backward traversal decoding mechanism, and several neighborhood operators are applied in IGEP. The backward traversal decoding mechanism dramatically More > Graphic Abstract

    Rules Mining-Based Gene Expression Programming for the Multi-Skill Resource Constrained Project Scheduling Problem

  • Open Access

    REVIEW

    Explainable Rules and Heuristics in AI Algorithm Recommendation Approaches—A Systematic Literature Review and Mapping Study

    Francisco José García-Peñalvo*, Andrea Vázquez-Ingelmo, Alicia García-Holgado

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1023-1051, 2023, DOI:10.32604/cmes.2023.023897

    Abstract The exponential use of artificial intelligence (AI) to solve and automated complex tasks has catapulted its popularity generating some challenges that need to be addressed. While AI is a powerful means to discover interesting patterns and obtain predictive models, the use of these algorithms comes with a great responsibility, as an incomplete or unbalanced set of training data or an unproper interpretation of the models’ outcomes could result in misleading conclusions that ultimately could become very dangerous. For these reasons, it is important to rely on expert knowledge when applying these methods. However, not every… More > Graphic Abstract

    Explainable Rules and Heuristics in AI Algorithm Recommendation Approaches—A Systematic Literature Review and Mapping Study

  • Open Access

    ARTICLE

    Attribute Reduction for Information Systems via Strength of Rules and Similarity Matrix

    Mohsen Eid1, Tamer Medhat2,*, Manal E. Ali3

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1531-1544, 2023, DOI:10.32604/csse.2023.031745

    Abstract An information system is a type of knowledge representation, and attribute reduction is crucial in big data, machine learning, data mining, and intelligent systems. There are several ways for solving attribute reduction problems, but they all require a common categorization. The selection of features in most scientific studies is a challenge for the researcher. When working with huge datasets, selecting all available attributes is not an option because it frequently complicates the study and decreases performance. On the other side, neglecting some attributes might jeopardize data accuracy. In this case, rough set theory provides a… More >

  • Open Access

    ARTICLE

    Fuzzy-HLSTM (Hierarchical Long Short-Term Memory) for Agricultural Based Information Mining

    Ahmed Abdu Alattab1,*, Mohammed Eid Ibrahim1, Reyazur Rashid Irshad1, Anwar Ali Yahya2, Amin A. Al-Awady3

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2397-2413, 2023, DOI:10.32604/cmc.2023.030924

    Abstract This research proposes a machine learning approach using fuzzy logic to build an information retrieval system for the next crop rotation. In case-based reasoning systems, case representation is critical, and thus, researchers have thoroughly investigated textual, attribute-value pair, and ontological representations. As big databases result in slow case retrieval, this research suggests a fast case retrieval strategy based on an associated representation, so that, cases are interrelated in both either similar or dissimilar cases. As soon as a new case is recorded, it is compared to prior data to find a relative match. The proposed More >

  • Open Access

    ARTICLE

    An Intelligent Medical Expert System Using Temporal Fuzzy Rules and Neural Classifier

    Praveen Talari1,*, A. Suresh2, M. G. Kavitha3

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 1053-1067, 2023, DOI:10.32604/iasc.2023.027024

    Abstract As per World Health Organization report which was released in the year of 2019, Diabetes claimed the lives of approximately 1.5 million individuals globally in 2019 and around 450 million people are affected by diabetes all over the world. Hence it is inferred that diabetes is rampant across the world with the majority of the world population being affected by it. Among the diabetics, it can be observed that a large number of people had failed to identify their disease in the initial stage itself and hence the disease level moved from Type-1 to Type-2.… More >

  • Open Access

    ARTICLE

    Improving Association Rules Accuracy in Noisy Domains Using Instance Reduction Techniques

    Mousa Al-Akhras1,2,*, Zainab Darwish2, Samer Atawneh1, Mohamed Habib1,3

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3719-3749, 2022, DOI:10.32604/cmc.2022.025196

    Abstract Association rules’ learning is a machine learning method used in finding underlying associations in large datasets. Whether intentionally or unintentionally present, noise in training instances causes overfitting while building the classifier and negatively impacts classification accuracy. This paper uses instance reduction techniques for the datasets before mining the association rules and building the classifier. Instance reduction techniques were originally developed to reduce memory requirements in instance-based learning. This paper utilizes them to remove noise from the dataset before training the association rules classifier. Extensive experiments were conducted to assess the accuracy of association rules with… More >

Displaying 1-10 on page 1 of 31. Per Page