Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (584)
  • Open Access

    ARTICLE

    FedCW: Client Selection with Adaptive Weight in Heterogeneous Federated Learning

    Haotian Wu1, Jiaming Pei2, Jinhai Li3,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.069873 - 10 November 2025

    Abstract With the increasing complexity of vehicular networks and the proliferation of connected vehicles, Federated Learning (FL) has emerged as a critical framework for decentralized model training while preserving data privacy. However, efficient client selection and adaptive weight allocation in heterogeneous and non-IID environments remain challenging. To address these issues, we propose Federated Learning with Client Selection and Adaptive Weighting (FedCW), a novel algorithm that leverages adaptive client selection and dynamic weight allocation for optimizing model convergence in real-time vehicular networks. FedCW selects clients based on their Euclidean distance from the global model and dynamically adjusts More >

  • Open Access

    REVIEW

    Detecting Anomalies in FinTech: A Graph Neural Network and Feature Selection Perspective

    Vinh Truong Hoang1,*, Nghia Dinh1, Viet-Tuan Le1, Kiet Tran-Trung1, Bay Nguyen Van1, Kittikhun Meethongjan2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-40, 2026, DOI:10.32604/cmc.2025.068733 - 10 November 2025

    Abstract The Financial Technology (FinTech) sector has witnessed rapid growth, resulting in increasingly complex and high-volume digital transactions. Although this expansion improves efficiency and accessibility, it also introduces significant vulnerabilities, including fraud, money laundering, and market manipulation. Traditional anomaly detection techniques often fail to capture the relational and dynamic characteristics of financial data. Graph Neural Networks (GNNs), capable of modeling intricate interdependencies among entities, have emerged as a powerful framework for detecting subtle and sophisticated anomalies. However, the high-dimensionality and inherent noise of FinTech datasets demand robust feature selection strategies to improve model scalability, performance, and More >

  • Open Access

    ARTICLE

    GSLDWOA: A Feature Selection Algorithm for Intrusion Detection Systems in IIoT

    Wanwei Huang1,*, Huicong Yu1, Jiawei Ren2, Kun Wang3, Yanbu Guo1, Lifeng Jin4

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-24, 2026, DOI:10.32604/cmc.2025.068493 - 10 November 2025

    Abstract Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity. These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy. This paper proposes an industrial Internet of Things intrusion detection feature selection algorithm based on an improved whale optimization algorithm (GSLDWOA). The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to, such as local optimality, long detection time, and reduced accuracy. First, the initial population’s diversity is increased using the Gaussian Mutation More >

  • Open Access

    ARTICLE

    Federated Multi-Label Feature Selection via Dual-Layer Hybrid Breeding Cooperative Particle Swarm Optimization with Manifold and Sparsity Regularization

    Songsong Zhang1, Huazhong Jin1,2,*, Zhiwei Ye1,2, Jia Yang1,2, Jixin Zhang1,2, Dongfang Wu1,2, Xiao Zheng1,2, Dingfeng Song1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-19, 2026, DOI:10.32604/cmc.2025.068044 - 10 November 2025

    Abstract Multi-label feature selection (MFS) is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels. However, traditional centralized methods face significant challenges in privacy-sensitive and distributed settings, often neglecting label dependencies and suffering from low computational efficiency. To address these issues, we introduce a novel framework, Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization (DHBCPSO-MSR). Leveraging the federated learning paradigm, Fed-MFSDHBCPSO allows clients to perform local feature selection (FS) using DHBCPSO-MSR. Locally selected feature subsets are encrypted with differential privacy (DP) and transmitted… More >

  • Open Access

    ARTICLE

    Efficient Arabic Essay Scoring with Hybrid Models: Feature Selection, Data Optimization, and Performance Trade-Offs

    Mohamed Ezz1, Meshrif Alruily1,*, Ayman Mohamed Mostafa2,*, Alaa S. Alaerjan1, Bader Aldughayfiq2, Hisham Allahem2, Abdulaziz Shehab2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-28, 2026, DOI:10.32604/cmc.2025.063189 - 10 November 2025

    Abstract Automated essay scoring (AES) systems have gained significant importance in educational settings, offering a scalable, efficient, and objective method for evaluating student essays. However, developing AES systems for Arabic poses distinct challenges due to the language’s complex morphology, diglossia, and the scarcity of annotated datasets. This paper presents a hybrid approach to Arabic AES by combining text-based, vector-based, and embedding-based similarity measures to improve essay scoring accuracy while minimizing the training data required. Using a large Arabic essay dataset categorized into thematic groups, the study conducted four experiments to evaluate the impact of feature selection,… More >

  • Open Access

    ARTICLE

    EventTracker Based Regression Prediction with Application to Composite Sensitive Microsensor Parameter Prediction

    Hongrong Wang1,2, Xinjian Li3,4, Xingjing She1, Wenjian Ma1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2039-2055, 2025, DOI:10.32604/cmes.2025.072572 - 26 November 2025

    Abstract In modern complex systems, real-time regression prediction plays a vital role in performance evaluation and risk warning. Nevertheless, existing methods still face challenges in maintaining stability and predictive accuracy under complex conditions. To address these limitations, this study proposes an online prediction approach that integrates event tracking sensitivity analysis with machine learning. Specifically, a real-time event tracking sensitivity analysis method is employed to capture and quantify the impact of key events on system outputs. On this basis, a mutual-information–based self-extraction mechanism is introduced to construct prior weights, which are then incorporated into a LightGBM prediction More >

  • Open Access

    REVIEW

    Is the Barthel index a valid tool for patient selection before urological surgery? A systematic review

    Andrea Panunzio1, Rossella Orlando1, Federico Greco2,3, Giovanni Mazzucato4, Floriana Luigina Rizzo1, Serena Domenica D’Elia1, Antonio Benito Porcaro5, Alessandro Antonelli5, Alessandro Tafuri1,6,*

    Canadian Journal of Urology, Vol.32, No.5, pp. 375-384, 2025, DOI:10.32604/cju.2025.066140 - 30 October 2025

    Abstract Background: The Barthel Index (BI) measures the level of patient independence in activities of daily living. This review aims to summarize current evidence on the use of the BI in urology, highlighting its potential as a tool for assessing patients prior to surgery. Materials and methods: A comprehensive search of PubMed, Scopus, and Web of Science databases was conducted for studies evaluating the BI in patients undergoing urologic surgery, following Systematic Review and Meta-analyses (PRISMA) guidelines. The BI was investigated both as a descriptor of baseline or postoperative health status and a prognostic indicator. A qualitative… More >

  • Open Access

    ARTICLE

    Optimal Location, Sizing and Technology Selection of STATCOM for Power Loss Minimization and Voltage Profile Using Multiple Optimization Methods

    Hajer Hafaiedh1,2, Adel Mahjoub3, Yahia Saoudi4, Anouar Benamor2, Okba Taouali5,*, Kamel Zidi6, Wad Ghaban6

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 571-596, 2025, DOI:10.32604/cmes.2025.071642 - 30 October 2025

    Abstract Several optimization methods, such as Particle Swarm Optimization (PSO) and Genetic Algorithm (GA), are used to select the most suitable Static Synchronous Compensator (STATCOM) technology for the optimal operation of the power system, as well as to determine its optimal location and size to minimize power losses. An IEEE 14 bus system, integrating three wind turbines based on Squirrel Cage Induction Generators (SCIGs), is used to test the applicability of the proposed algorithms. The results demonstrate that these algorithms are capable of selecting the most appropriate technology while optimally sizing and locating the STATCOM to More >

  • Open Access

    ARTICLE

    Hybrid Meta-Heuristic Feature Selection Model for Network Traffic-Based Intrusion Detection in AIoT

    Seungyeon Baek1,#, Jueun Jeon2,#, Byeonghui Jeong1, Young-Sik Jeong1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 1213-1236, 2025, DOI:10.32604/cmes.2025.070679 - 30 October 2025

    Abstract With the advent of the sixth-generation wireless technology, the importance of using artificial intelligence of things (AIoT) devices is increasing to enhance efficiency. As massive volumes of data are collected and stored in these AIoT environments, each device becomes a potential attack target, leading to increased security vulnerabilities. Therefore, intrusion detection studies have been conducted to detect malicious network traffic. However, existing studies have been biased toward conducting in-depth analyses of individual packets to improve accuracy or applying flow-based statistical information to ensure real-time performance. Effectively responding to complex and multifaceted threats in large-scale AIoT… More >

  • Open Access

    ARTICLE

    A Filter-Based Feature Selection Framework to Detect Phishing URLs Using Stacking Ensemble Machine Learning

    Nimra Bari1, Tahir Saleem2, Munam Shah3, Abdulmohsen Algarni4, Asma Patel5,*, Insaf Ullah6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 1167-1187, 2025, DOI:10.32604/cmes.2025.070311 - 30 October 2025

    Abstract Today, phishing is an online attack designed to obtain sensitive information such as credit card and bank account numbers, passwords, and usernames. We can find several anti-phishing solutions, such as heuristic detection, virtual similarity detection, black and white lists, and machine learning (ML). However, phishing attempts remain a problem, and establishing an effective anti-phishing strategy is a work in progress. Furthermore, while most anti-phishing solutions achieve the highest levels of accuracy on a given dataset, their methods suffer from an increased number of false positives. These methods are ineffective against zero-hour attacks. Phishing sites with… More >

Displaying 1-10 on page 1 of 584. Per Page