Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (588)
  • Open Access

    ARTICLE

    A Joint Optimization Model for Device Selection and Power Allocation under Dynamic Uncertain Environments

    Bohui Li1, Bin Wang1, Linjie Wu1, Xingjuan Cai1,*, Maoqing Zhang2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-28, 2026, DOI:10.32604/cmc.2025.070592 - 09 December 2025

    Abstract Federated Learning (FL) provides an effective framework for efficient processing in vehicular edge computing. However, the dynamic and uncertain communication environment, along with the performance variations of vehicular devices, affect the distribution and uploading processes of model parameters. In FL-assisted Internet of Vehicles (IoV) scenarios, challenges such as data heterogeneity, limited device resources, and unstable communication environments become increasingly prominent. These issues necessitate intelligent vehicle selection schemes to enhance training efficiency. Given this context, we propose a new scenario involving FL-assisted IoV systems under dynamic and uncertain communication conditions, and develop a dynamic interval multi-objective More >

  • Open Access

    ARTICLE

    Federated Dynamic Aggregation Selection Strategy-Based Multi-Receptive Field Fusion Classification Framework for Point Cloud Classification

    Yuchao Hou1,2, Biaobiao Bai3, Shuai Zhao3, Yue Wang3, Jie Wang3, Zijian Li4,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-30, 2026, DOI:10.32604/cmc.2025.069789 - 09 December 2025

    Abstract Recently, large-scale deep learning models have been increasingly adopted for point cloud classification. However, these methods typically require collecting extensive datasets from multiple clients, which may lead to privacy leaks. Federated learning provides an effective solution to data leakage by eliminating the need for data transmission, relying instead on the exchange of model parameters. However, the uneven distribution of client data can still affect the model’s ability to generalize effectively. To address these challenges, we propose a new framework for point cloud classification called Federated Dynamic Aggregation Selection Strategy-based Multi-Receptive Field Fusion Classification Framework (FDASS-MRFCF).… More >

  • Open Access

    ARTICLE

    FedCW: Client Selection with Adaptive Weight in Heterogeneous Federated Learning

    Haotian Wu1, Jiaming Pei2, Jinhai Li3,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.069873 - 10 November 2025

    Abstract With the increasing complexity of vehicular networks and the proliferation of connected vehicles, Federated Learning (FL) has emerged as a critical framework for decentralized model training while preserving data privacy. However, efficient client selection and adaptive weight allocation in heterogeneous and non-IID environments remain challenging. To address these issues, we propose Federated Learning with Client Selection and Adaptive Weighting (FedCW), a novel algorithm that leverages adaptive client selection and dynamic weight allocation for optimizing model convergence in real-time vehicular networks. FedCW selects clients based on their Euclidean distance from the global model and dynamically adjusts More >

  • Open Access

    REVIEW

    Detecting Anomalies in FinTech: A Graph Neural Network and Feature Selection Perspective

    Vinh Truong Hoang1,*, Nghia Dinh1, Viet-Tuan Le1, Kiet Tran-Trung1, Bay Nguyen Van1, Kittikhun Meethongjan2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-40, 2026, DOI:10.32604/cmc.2025.068733 - 10 November 2025

    Abstract The Financial Technology (FinTech) sector has witnessed rapid growth, resulting in increasingly complex and high-volume digital transactions. Although this expansion improves efficiency and accessibility, it also introduces significant vulnerabilities, including fraud, money laundering, and market manipulation. Traditional anomaly detection techniques often fail to capture the relational and dynamic characteristics of financial data. Graph Neural Networks (GNNs), capable of modeling intricate interdependencies among entities, have emerged as a powerful framework for detecting subtle and sophisticated anomalies. However, the high-dimensionality and inherent noise of FinTech datasets demand robust feature selection strategies to improve model scalability, performance, and More >

  • Open Access

    ARTICLE

    GSLDWOA: A Feature Selection Algorithm for Intrusion Detection Systems in IIoT

    Wanwei Huang1,*, Huicong Yu1, Jiawei Ren2, Kun Wang3, Yanbu Guo1, Lifeng Jin4

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-24, 2026, DOI:10.32604/cmc.2025.068493 - 10 November 2025

    Abstract Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity. These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy. This paper proposes an industrial Internet of Things intrusion detection feature selection algorithm based on an improved whale optimization algorithm (GSLDWOA). The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to, such as local optimality, long detection time, and reduced accuracy. First, the initial population’s diversity is increased using the Gaussian Mutation More >

  • Open Access

    ARTICLE

    Federated Multi-Label Feature Selection via Dual-Layer Hybrid Breeding Cooperative Particle Swarm Optimization with Manifold and Sparsity Regularization

    Songsong Zhang1, Huazhong Jin1,2,*, Zhiwei Ye1,2, Jia Yang1,2, Jixin Zhang1,2, Dongfang Wu1,2, Xiao Zheng1,2, Dingfeng Song1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-19, 2026, DOI:10.32604/cmc.2025.068044 - 10 November 2025

    Abstract Multi-label feature selection (MFS) is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels. However, traditional centralized methods face significant challenges in privacy-sensitive and distributed settings, often neglecting label dependencies and suffering from low computational efficiency. To address these issues, we introduce a novel framework, Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization (DHBCPSO-MSR). Leveraging the federated learning paradigm, Fed-MFSDHBCPSO allows clients to perform local feature selection (FS) using DHBCPSO-MSR. Locally selected feature subsets are encrypted with differential privacy (DP) and transmitted… More >

  • Open Access

    ARTICLE

    Efficient Arabic Essay Scoring with Hybrid Models: Feature Selection, Data Optimization, and Performance Trade-Offs

    Mohamed Ezz1, Meshrif Alruily1,*, Ayman Mohamed Mostafa2,*, Alaa S. Alaerjan1, Bader Aldughayfiq2, Hisham Allahem2, Abdulaziz Shehab2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-28, 2026, DOI:10.32604/cmc.2025.063189 - 10 November 2025

    Abstract Automated essay scoring (AES) systems have gained significant importance in educational settings, offering a scalable, efficient, and objective method for evaluating student essays. However, developing AES systems for Arabic poses distinct challenges due to the language’s complex morphology, diglossia, and the scarcity of annotated datasets. This paper presents a hybrid approach to Arabic AES by combining text-based, vector-based, and embedding-based similarity measures to improve essay scoring accuracy while minimizing the training data required. Using a large Arabic essay dataset categorized into thematic groups, the study conducted four experiments to evaluate the impact of feature selection,… More >

  • Open Access

    REVIEW

    Advances in Grapevine Breeding: Integrating Traditional Selection, Genomic Tools, and Gene Editing Technologies

    Sandra Pérez-Álvarez1,*, Eduardo Fidel Héctor-Ardisana2, Eduardo Sandoval Castro3, Erick H. Ochoa-Chaparro4, Luisa Patricia Uranga-Valencia1

    Phyton-International Journal of Experimental Botany, Vol.94, No.12, pp. 3749-3803, 2025, DOI:10.32604/phyton.2025.072135 - 29 December 2025

    Abstract Grape (Vitis vinifera L.) cultivation has progressed from early domestication and clonal propagation to modern, data-driven breeding that is reshaping viticulture and wine quality. Yet climatic and biotic constraints still impose heavy losses—downy mildew can reduce yields by ≈75% in humid regions and gray mold by 20–50%—sustaining the need for resistant cultivars. Producer selection, interspecific crossing, and formal improvement programs have generated ~10,000 varieties, although only a few dozen dominate global acreage. Conventional breeding has delivered fungus-resistant “PIWI” cultivars that retain ≥85% of the V. vinifera genome; in Austria, national PIWI varieties are gaining acceptance for combined… More >

  • Open Access

    ARTICLE

    AutoSHARC: Feedback Driven Explainable Intrusion Detection with SHAP-Guided Post-Hoc Retraining for QoS Sensitive IoT Networks

    Muhammad Saad Farooqui1, Aizaz Ahmad Khattak2, Bakri Hossain Awaji3, Nazik Alturki4, Noha Alnazzawi5, Muhammad Hanif6,*, Muhammad Shahbaz Khan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4395-4439, 2025, DOI:10.32604/cmes.2025.072023 - 23 December 2025

    Abstract Quality of Service (QoS) assurance in programmable IoT and 5G networks is increasingly threatened by cyberattacks such as Distributed Denial of Service (DDoS), spoofing, and botnet intrusions. This paper presents AutoSHARC, a feedback-driven, explainable intrusion detection framework that integrates Boruta and LightGBM–SHAP feature selection with a lightweight CNN–Attention–GRU classifier. AutoSHARC employs a two-stage feature selection pipeline to identify the most informative features from high-dimensional IoT traffic and reduces 46 features to 30 highly informative ones, followed by post-hoc SHAP-guided retraining to refine feature importance, forming a feedback loop where only the most impactful attributes are More >

  • Open Access

    ARTICLE

    EventTracker Based Regression Prediction with Application to Composite Sensitive Microsensor Parameter Prediction

    Hongrong Wang1,2, Xinjian Li3,4, Xingjing She1, Wenjian Ma1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2039-2055, 2025, DOI:10.32604/cmes.2025.072572 - 26 November 2025

    Abstract In modern complex systems, real-time regression prediction plays a vital role in performance evaluation and risk warning. Nevertheless, existing methods still face challenges in maintaining stability and predictive accuracy under complex conditions. To address these limitations, this study proposes an online prediction approach that integrates event tracking sensitivity analysis with machine learning. Specifically, a real-time event tracking sensitivity analysis method is employed to capture and quantify the impact of key events on system outputs. On this basis, a mutual-information–based self-extraction mechanism is introduced to construct prior weights, which are then incorporated into a LightGBM prediction More >

Displaying 1-10 on page 1 of 588. Per Page