Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (20)
  • Open Access

    ARTICLE

    Semi-Supervised Medical Image Classification Based on Sample Intrinsic Similarity Using Canonical Correlation Analysis

    Kun Liu1, Chen Bao1,*, Sidong Liu2

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4451-4468, 2025, DOI:10.32604/cmc.2024.059053 - 06 March 2025

    Abstract Large amounts of labeled data are usually needed for training deep neural networks in medical image studies, particularly in medical image classification. However, in the field of semi-supervised medical image analysis, labeled data is very scarce due to patient privacy concerns. For researchers, obtaining high-quality labeled images is exceedingly challenging because it involves manual annotation and clinical understanding. In addition, skin datasets are highly suitable for medical image classification studies due to the inter-class relationships and the inter-class similarities of skin lesions. In this paper, we propose a model called Coalition Sample Relation Consistency (CSRC),… More >

  • Open Access

    REVIEW

    A Survey on Supervised, Unsupervised, and Semi-Supervised Approaches in Crowd Counting

    Jianyong Wang1, Mingliang Gao1, Qilei Li2, Hyunbum Kim3, Gwanggil Jeon3,*

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 3561-3582, 2024, DOI:10.32604/cmc.2024.058637 - 19 December 2024

    Abstract Quantifying the number of individuals in images or videos to estimate crowd density is a challenging yet crucial task with significant implications for fields such as urban planning and public safety. Crowd counting has attracted considerable attention in the field of computer vision, leading to the development of numerous advanced models and methodologies. These approaches vary in terms of supervision techniques, network architectures, and model complexity. Currently, most crowd counting methods rely on fully supervised learning, which has proven to be effective. However, this approach presents challenges in real-world scenarios, where labeled data and ground-truth… More >

  • Open Access

    ARTICLE

    An Online Fake Review Detection Approach Using Famous Machine Learning Algorithms

    Asma Hassan Alshehri*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2767-2786, 2024, DOI:10.32604/cmc.2023.046838 - 27 February 2024

    Abstract Online review platforms are becoming increasingly popular, encouraging dishonest merchants and service providers to deceive customers by creating fake reviews for their goods or services. Using Sybil accounts, bot farms, and real account purchases, immoral actors demonize rivals and advertise their goods. Most academic and industry efforts have been aimed at detecting fake/fraudulent product or service evaluations for years. The primary hurdle to identifying fraudulent reviews is the lack of a reliable means to distinguish fraudulent reviews from real ones. This paper adopts a semi-supervised machine learning method to detect fake reviews on any website, More >

  • Open Access

    ARTICLE

    Cross-Domain TSK Fuzzy System Based on Semi-Supervised Learning for Epilepsy Classification

    Zaihe Cheng1, Yuwen Tao2, Xiaoqing Gu3, Yizhang Jiang2, Pengjiang Qian2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1613-1633, 2023, DOI:10.32604/cmes.2023.027708 - 26 June 2023

    Abstract Through semi-supervised learning and knowledge inheritance, a novel Takagi-Sugeno-Kang (TSK) fuzzy system framework is proposed for epilepsy data classification in this study. The new method is based on the maximum mean discrepancy (MMD) method and TSK fuzzy system, as a basic model for the classification of epilepsy data. First, for medical data, the interpretability of TSK fuzzy systems can ensure that the prediction results are traceable and safe. Second, in view of the deviation in the data distribution between the real source domain and the target domain, MMD is used to measure the distance between… More >

  • Open Access

    ARTICLE

    Attentive Neighborhood Feature Augmentation for Semi-supervised Learning

    Qi Liu1,2, Jing Li1,2,*, Xianmin Wang1,*, Wenpeng Zhao1

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1753-1771, 2023, DOI:10.32604/iasc.2023.039600 - 21 June 2023

    Abstract Recent state-of-the-art semi-supervised learning (SSL) methods usually use data augmentations as core components. Such methods, however, are limited to simple transformations such as the augmentations under the instance’s naive representations or the augmentations under the instance’s semantic representations. To tackle this problem, we offer a unique insight into data augmentations and propose a novel data-augmentation-based semi-supervised learning method, called Attentive Neighborhood Feature Augmentation (ANFA). The motivation of our method lies in the observation that the relationship between the given feature and its neighborhood may contribute to constructing more reliable transformations for the data, and further… More >

  • Open Access

    ARTICLE

    XA-GANomaly: An Explainable Adaptive Semi-Supervised Learning Method for Intrusion Detection Using GANomaly

    Yuna Han1, Hangbae Chang2,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 221-237, 2023, DOI:10.32604/cmc.2023.039463 - 08 June 2023

    Abstract Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission. Recent research has focused on using semi-supervised learning mechanisms to identify abnormal network traffic to deal with labeled and unlabeled data in the industry. However, real-time training and classifying network traffic pose challenges, as they can lead to the degradation of the overall dataset and difficulties preventing attacks. Additionally, existing semi-supervised learning research might need to analyze the experimental results comprehensively. This paper proposes XA-GANomaly, a novel technique for explainable adaptive semi-supervised learning using GANomaly, an image anomalous… More >

  • Open Access

    ARTICLE

    A Method for Classification and Evaluation of Pilot’s Mental States Based on CNN

    Qianlei Wang1,2,3,*, Zaijun Wang3, Renhe Xiong4, Xingbin Liao1,2, Xiaojun Tan5

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1999-2020, 2023, DOI:10.32604/csse.2023.034183 - 09 February 2023

    Abstract How to accurately recognize the mental state of pilots is a focus in civil aviation safety. The mental state of pilots is closely related to their cognitive ability in piloting. Whether the cognitive ability meets the standard is related to flight safety. However, the pilot's working state is unique, which increases the difficulty of analyzing the pilot's mental state. In this work, we proposed a Convolutional Neural Network (CNN) that merges attention to classify the mental state of pilots through electroencephalography (EEG). Considering the individual differences in EEG, semi-supervised learning based on improved K-Means is… More >

  • Open Access

    ARTICLE

    Using Informative Score for Instance Selection Strategy in Semi-Supervised Sentiment Classification

    Vivian Lee Lay Shan, Gan Keng Hoon*, Tan Tien Ping, Rosni Abdullah

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4801-4818, 2023, DOI:10.32604/cmc.2023.033752 - 28 December 2022

    Abstract Sentiment classification is a useful tool to classify reviews about sentiments and attitudes towards a product or service. Existing studies heavily rely on sentiment classification methods that require fully annotated inputs. However, there is limited labelled text available, making the acquirement process of the fully annotated input costly and labour-intensive. Lately, semi-supervised methods emerge as they require only partially labelled input but perform comparably to supervised methods. Nevertheless, some works reported that the performance of the semi-supervised model degraded after adding unlabelled instances into training. Literature also shows that not all unlabelled instances are equally… More >

  • Open Access

    ARTICLE

    Drug–Target Interaction Prediction Model Using Optimal Recurrent Neural Network

    G. Kavipriya*, D. Manjula

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1675-1689, 2023, DOI:10.32604/iasc.2023.027670 - 19 July 2022

    Abstract Drug-target interactions prediction (DTIP) remains an important requirement in the field of drug discovery and human medicine. The identification of interaction among the drug compound and target protein plays an essential process in the drug discovery process. It is a lengthier and complex process for predicting the drug target interaction (DTI) utilizing experimental approaches. To resolve these issues, computational intelligence based DTIP techniques were developed to offer an efficient predictive model with low cost. The recently developed deep learning (DL) models can be employed for the design of effective predictive approaches for DTIP. With this… More >

  • Open Access

    ARTICLE

    A Study on Cascade R-CNN-Based Dangerous Goods Detection Using X-Ray Image

    Sang-Hyun Lee*

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 4245-4260, 2022, DOI:10.32604/cmc.2022.026012 - 16 June 2022

    Abstract X-ray inspection equipment is divided into small baggage inspection equipment and large cargo inspection equipment. In the case of inspection using X-ray scanning equipment, it is possible to identify the contents of goods, unauthorized transport, or hidden goods in real-time by-passing cargo through X-rays without opening it. In this paper, we propose a system for detecting dangerous objects in X-ray images using the Cascade Region-based Convolutional Neural Network (Cascade R-CNN) model, and the data used for learning consists of dangerous goods, storage media, firearms, and knives. In addition, to minimize the overfitting problem caused by… More >

Displaying 1-10 on page 1 of 20. Per Page