Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (27)
  • Open Access

    ARTICLE

    A Simplified Method for the Stress Analysis of Underground Transfer Structures Crossing Multiple Subway Tunnels

    Shen Yan1, Dajiang Geng2,*, Ning Dai3, Mingjian Long2, Zhicheng Bai2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2893-2915, 2024, DOI:10.32604/cmes.2024.046931

    Abstract According to the design specifications, the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer. To address this challenge, a subterranean transfer structure spanning multiple subway tunnels was proposed. Deliberating on the function of piles in the transfer structure as springs with axial and bending stiffness, and taking into account the force balance and deformation coordination conditions of beams and plates within the transfer structure, we established a simplified mechanical model that incorporates soil stratification by combining it with the Winkler elastic foundation beam model. The resolved established simplified mechanical model employed… More >

  • Open Access

    ARTICLE

    A Novel Deep Learning Based Healthcare Model for COVID-19 Pandemic Stress Analysis

    Ankur Dumka1, Parag Verma2, Rajesh Singh3, Anil Kumar Bisht4, Divya Anand5,6,*, Hani Moaiteq Aljahdali7, Irene Delgado Noya6,8, Silvia Aparicio Obregon6,9

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 6029-6044, 2022, DOI:10.32604/cmc.2022.024698

    Abstract Coronavirus (COVID-19) has impacted nearly every person across the globe either in terms of losses of life or as of lockdown. The current coronavirus (COVID-19) pandemic is a rare/special situation where people can express their feelings on Internet-based social networks. Social media is emerging as the biggest platform in recent years where people spend most of their time expressing themselves and their emotions. This research is based on gathering data from Twitter and analyzing the behavior of the people during the COVID-19 lockdown. The research is based on the logic expressed by people in this perspective and emotions for the… More >

  • Open Access

    REVIEW

    Tensile and Stress Analysis of Hybrid Composite Prosthetic Socket Reinforced with Natural Fibers

    Noor K. Faheed*, Qahtan A. Hamad, Jawad K. Oleiwi

    Journal of Renewable Materials, Vol.10, No.7, pp. 1989-2013, 2022, DOI:10.32604/jrm.2022.017573

    Abstract Natural fibers and their composites are the evolving movements in material science, and with that, the utmost use of plant-based fibers has become the focus of this research. Sisal and cotton natural fibers were used to construct a prosthetic socket as an attempt to substitute material currently available in the manufacturing of sockets. The vacuum bagging technique was adopted to produce a below-knee socket. The influence of different fiber layering sequences on the volumetric and mechanical characteristics was estimated experimentally and numerically. Mechanical tensile tests were used to assess laminated specimens, such as tensile strength, young modulus, and elongation percentage.… More >

  • Open Access

    ARTICLE

    Stress Analysis of Printed Circuit Board with Different Thickness and Composite Materials Under Shock Loading

    Kuan-Ting Liu1, Chun-Lin Lu1, Nyan-Hwa Tai2, Meng-Kao Yeh1, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.2, pp. 661-674, 2020, DOI:10.32604/cmes.2020.07792

    Abstract In this study, the deformation and stress distribution of printed circuit board (PCB) with different thickness and composite materials under a shock loading were analyzed by the finite element analysis. The standard 8-layer PCB subjected to a shock loading 1500 g was evaluated first. Moreover, the finite element models of the PCB with different thickness by stacking various number of layers were discussed. In addition to changing thickness, the core material of PCB was replaced from woven E-glass/epoxy to woven carbon fiber/epoxy for structural enhancement. The non-linear material property of copper foil was considered in the analysis. The results indicated… More >

  • Open Access

    ARTICLE

    Multi-Scale Analysis of Fretting Fatigue in Heterogeneous Materials Using Computational Homogenization

    Dimitra Papagianni1, 2, Magd Abdel Wahab3, 4, *

    CMC-Computers, Materials & Continua, Vol.62, No.1, pp. 79-97, 2020, DOI:10.32604/cmc.2020.07988

    Abstract This paper deals with modeling of the phenomenon of fretting fatigue in heterogeneous materials using the multi-scale computational homogenization technique and finite element analysis (FEA). The heterogeneous material for the specimens consists of a single hole model (25% void/cell, 16% void/cell and 10% void/cell) and a four-hole model (25% void/cell). Using a representative volume element (RVE), we try to produce the equivalent homogenized properties and work on a homogeneous specimen for the study of fretting fatigue. Next, the fretting fatigue contact problem is performed for 3 new cases of models that consist of a homogeneous and a heterogeneous part (single… More >

  • Open Access

    ABSTRACT

    Vascular Stress Analysis During in Vivo Intravascular Optical Coherence Tomography Imaging

    Junjie Jia1, Cuiru Sun1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 61-64, 2019, DOI:10.32604/mcb.2019.05736

    Abstract Intravascular optical coherence tomography (IVOCT) has been employed to clinical coronary imaging for several years. But the influence of flushing and OCT catheter to the blood vessel biomechanical properties have not been studied. In this paper, IVOCT imaging is integrated with the fluid-structure interaction (FSI) simulation to study the blood flow velocity and the stress distribution of a porcine carotid artery during IVOCT imaging. 3D geometric model is built based on the in vivo OCT images, and a hyperelastic model is employed for the material properties of the vascular wall. The blood flow profile and wall stress distributions under various… More >

  • Open Access

    ABSTRACT

    The State of Art of Optical Stress Analysis

    Fu-pen Chiang

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.16, No.3, pp. 65-66, 2011, DOI:10.3970/icces.2011.016.065

    Abstract Theme Lecture More >

  • Open Access

    ABSTRACT

    BEM stress analysis of 3D generally anisotropic elastic solids

    C. L. Tan1, Y.C. Shiah2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.9, No.1, pp. 27-32, 2009, DOI:10.3970/icces.2009.009.027

    Abstract A BEM formulation for the numerical stress analysis of 3D generally anisotropic elastic solids is presented in this paper. It is based on closed-form algebraic expressions of the fundamental solutions derived by Ting and Lee [7] and Lee [8] which are defined in terms of Stroh's eigenvalues, and has never been implemented previously in the literature. The veracity of the formulation and implementation is demonstrated by two engineering examples. More >

  • Open Access

    ABSTRACT

    Stress Analysis in Layered Aortic Arch model: Influence of Arch Aneurysm and Wall Stiffness

    F. Gao1, D. Tang2∗, Z. Guo3, Makoto Sakamoto4, T. Matsuzawa5

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.1, No.1, pp. 21-28, 2007, DOI:10.3970/icces.2007.001.021

    Abstract Patients with aortic aneurysm, especially aortic arch aneurysm, are prone to aortic dissection. For investigation of the effects of aneurysm and wall stiffness on wall stress distribution, a nonaneurysm arch model as well as an aneurysm arch model was constructed. The fluid structure interaction was implemented in the arch model of aorta. The results show that the stresses are much higher at inflection points in the aneurysm model than in nonaneurysm model, and the stresses at media in stiffened wall are higher than in unstiffened wall. The high composite stress is located at inflection points and is much higher in… More >

  • Open Access

    ARTICLE

    Shape Optimization of Orthopedic Fixation Plate Based on Static Stress Analysis

    Xiaozhong Chen1,*, Zhijian Mao1

    Molecular & Cellular Biomechanics, Vol.15, No.4, pp. 229-241, 2018, DOI:10.32604/mcb.2018.03818

    Abstract Shape optimization of orthopedic fixation plate is of great importance in the treatment of complex fracture. Therefore, a method in this paper to automatically optimize the complex shape of anatomical plate according to static analysis. Based on the theory of finite element analysis (FEA), our approach is processed as follows. First, the three-dimensional finite element model of the fracture fixation is constructed. Next, according to the type and feature of fracture, the anatomical plate was parameterized in two levels (the bounding surface and plate model). Then, parameter constraints are set up to meet the needs of surgical fracture treatment. Finally,… More >

Displaying 1-10 on page 1 of 27. Per Page