Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (111)
  • Open Access

    REVIEW

    Survey of Indoor Localization Based on Deep Learning

    Khaldon Azzam Kordi1, Mardeni Roslee1,*, Mohamad Yusoff Alias1, Abdulraqeb Alhammadi2, Athar Waseem3, Anwar Faizd Osman4

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3261-3298, 2024, DOI:10.32604/cmc.2024.044890

    Abstract This study comprehensively examines the current state of deep learning (DL) usage in indoor positioning. It emphasizes the significance and efficiency of convolutional neural networks (CNNs) and recurrent neural networks (RNNs). Unlike prior studies focused on single sensor modalities like Wi-Fi or Bluetooth, this research explores the integration of multiple sensor modalities (e.g., Wi-Fi, Bluetooth, Ultra-Wideband, ZigBee) to expand indoor localization methods, particularly in obstructed environments. It addresses the challenge of precise object localization, introducing a novel hybrid DL approach using received signal information (RSI), Received Signal Strength (RSS), and Channel State Information (CSI) data… More >

  • Open Access

    ARTICLE

    A Privacy Preservation Method for Attributed Social Network Based on Negative Representation of Information

    Hao Jiang1, Yuerong Liao1, Dongdong Zhao2, Wenjian Luo3, Xingyi Zhang1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 1045-1075, 2024, DOI:10.32604/cmes.2024.048653

    Abstract Due to the presence of a large amount of personal sensitive information in social networks, privacy preservation issues in social networks have attracted the attention of many scholars. Inspired by the self-nonself discrimination paradigm in the biological immune system, the negative representation of information indicates features such as simplicity and efficiency, which is very suitable for preserving social network privacy. Therefore, we suggest a method to preserve the topology privacy and node attribute privacy of attribute social networks, called AttNetNRI. Specifically, a negative survey-based method is developed to disturb the relationship between nodes in the… More >

  • Open Access

    REVIEW

    A Survey on Chinese Sign Language Recognition: From Traditional Methods to Artificial Intelligence

    Xianwei Jiang1, Yanqiong Zhang1,*, Juan Lei1, Yudong Zhang2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 1-40, 2024, DOI:10.32604/cmes.2024.047649

    Abstract Research on Chinese Sign Language (CSL) provides convenience and support for individuals with hearing impairments to communicate and integrate into society. This article reviews the relevant literature on Chinese Sign Language Recognition (CSLR) in the past 20 years. Hidden Markov Models (HMM), Support Vector Machines (SVM), and Dynamic Time Warping (DTW) were found to be the most commonly employed technologies among traditional identification methods. Benefiting from the rapid development of computer vision and artificial intelligence technology, Convolutional Neural Networks (CNN), 3D-CNN, YOLO, Capsule Network (CapsNet) and various deep neural networks have sprung up. Deep Neural… More >

  • Open Access

    REVIEW

    Survey and Prospect for Applying Knowledge Graph in Enterprise Risk Management

    Pengjun Li1, Qixin Zhao1, Yingmin Liu1, Chao Zhong1, Jinlong Wang1,*, Zhihan Lyu2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3825-3865, 2024, DOI:10.32604/cmc.2024.046851

    Abstract Enterprise risk management holds significant importance in fostering sustainable growth of businesses and in serving as a critical element for regulatory bodies to uphold market order. Amidst the challenges posed by intricate and unpredictable risk factors, knowledge graph technology is effectively driving risk management, leveraging its ability to associate and infer knowledge from diverse sources. This review aims to comprehensively summarize the construction techniques of enterprise risk knowledge graphs and their prominent applications across various business scenarios. Firstly, employing bibliometric methods, the aim is to uncover the developmental trends and current research hotspots within the… More >

  • Open Access

    REVIEW

    A Survey on Blockchain-Based Federated Learning: Categorization, Application and Analysis

    Yuming Tang1,#, Yitian Zhang2,#, Tao Niu1, Zhen Li2,3,*, Zijian Zhang1,3, Huaping Chen4, Long Zhang4

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2451-2477, 2024, DOI:10.32604/cmes.2024.030084

    Abstract Federated Learning (FL), as an emergent paradigm in privacy-preserving machine learning, has garnered significant interest from scholars and engineers across both academic and industrial spheres. Despite its innovative approach to model training across distributed networks, FL has its vulnerabilities; the centralized server-client architecture introduces risks of single-point failures. Moreover, the integrity of the global model—a cornerstone of FL—is susceptible to compromise through poisoning attacks by malicious actors. Such attacks and the potential for privacy leakage via inference starkly undermine FL’s foundational privacy and security goals. For these reasons, some participants unwilling use their private data… More >

  • Open Access

    ARTICLE

    Self-Compassion Moderates the Effect of Contingent Self-Esteem on Well-Being: Evidence from Cross-Sectional Survey and Experiment

    Ruirui Zhang1, Xuguang Zhang2, Minxin Yang3, Haoran Zhang4,5,*

    International Journal of Mental Health Promotion, Vol.26, No.2, pp. 117-126, 2024, DOI:10.32604/ijmhp.2023.045819

    Abstract Contingent self-esteem captures the fragile nature of self-esteem and is often regarded as suboptimal to psychological functioning. Self-compassion is another important self-related concept assumed to promote mental health and well-being. However, research on the relation of self-compassion to contingent self-esteem is lacking. Two studies were conducted to explore the role of self-compassion, either as a personal characteristic or an induced mindset, in influencing the effects of contingent self-esteem on well-being. Study 1 recruited 256 Chinese college students (30.4% male, mean age = 21.72 years) who filled out measures of contingent self-esteem, self-compassion, and well-being. The… More >

  • Open Access

    ARTICLE

    Parental Educational Expectations, Academic Pressure, and Adolescent Mental Health: An Empirical Study Based on CEPS Survey Data

    Tao Xu1,*, Fangqiang Zuo1, Kai Zheng2,*

    International Journal of Mental Health Promotion, Vol.26, No.2, pp. 93-103, 2024, DOI:10.32604/ijmhp.2023.043226

    Abstract Background: This study aimed to investigate the relationship between parental educational expectations and adolescent mental health problems, with academic pressure as a moderating variable. Methods: This study was based on the baseline data of the China Education Panel Survey, which was collected within one school year during 2013–2014. It included 19,958 samples from seventh and ninth graders, who ranged from 11 to 18 years old. After removing missing values and conducting relevant data processing, the effective sample size for analysis was 16344. The OLS (Ordinary Least Squares) multiple linear regression analysis was used to examine… More >

  • Open Access

    REVIEW

    A Comprehensive Survey for Privacy-Preserving Biometrics: Recent Approaches, Challenges, and Future Directions

    Shahriar Md Arman1, Tao Yang1,*, Shahadat Shahed2, Alanoud Al Mazroa3, Afraa Attiah4, Linda Mohaisen4

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2087-2110, 2024, DOI:10.32604/cmc.2024.047870

    Abstract The rapid growth of smart technologies and services has intensified the challenges surrounding identity authentication techniques. Biometric credentials are increasingly being used for verification due to their advantages over traditional methods, making it crucial to safeguard the privacy of people’s biometric data in various scenarios. This paper offers an in-depth exploration for privacy-preserving techniques and potential threats to biometric systems. It proposes a noble and thorough taxonomy survey for privacy-preserving techniques, as well as a systematic framework for categorizing the field’s existing literature. We review the state-of-the-art methods and address their advantages and limitations in More >

  • Open Access

    REVIEW

    Cloud Datacenter Selection Using Service Broker Policies: A Survey

    Salam Al-E’mari1, Yousef Sanjalawe2,*, Ahmad Al-Daraiseh3, Mohammad Bany Taha4, Mohammad Aladaileh2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 1-41, 2024, DOI:10.32604/cmes.2023.043627

    Abstract Amid the landscape of Cloud Computing (CC), the Cloud Datacenter (DC) stands as a conglomerate of physical servers, whose performance can be hindered by bottlenecks within the realm of proliferating CC services. A linchpin in CC’s performance, the Cloud Service Broker (CSB), orchestrates DC selection. Failure to adroitly route user requests with suitable DCs transforms the CSB into a bottleneck, endangering service quality. To tackle this, deploying an efficient CSB policy becomes imperative, optimizing DC selection to meet stringent Quality-of-Service (QoS) demands. Amidst numerous CSB policies, their implementation grapples with challenges like costs and availability.… More >

  • Open Access

    REVIEW

    A Survey of Knowledge Graph Construction Using Machine Learning

    Zhigang Zhao1, Xiong Luo1,2,3,*, Maojian Chen1,2,3, Ling Ma1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 225-257, 2024, DOI:10.32604/cmes.2023.031513

    Abstract Knowledge graph (KG) serves as a specialized semantic network that encapsulates intricate relationships among real-world entities within a structured framework. This framework facilitates a transformation in information retrieval, transitioning it from mere string matching to far more sophisticated entity matching. In this transformative process, the advancement of artificial intelligence and intelligent information services is invigorated. Meanwhile, the role of machine learning method in the construction of KG is important, and these techniques have already achieved initial success. This article embarks on a comprehensive journey through the last strides in the field of KG via machine More >

Displaying 1-10 on page 1 of 111. Per Page