Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (28)
  • Open Access

    ARTICLE

    Ghost-YOLO v8: An Attention-Guided Enhanced Small Target Detection Algorithm for Floating Litter on Water Surfaces

    Zhongmin Huangfu, Shuqing Li*, Luoheng Yan

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3713-3731, 2024, DOI:10.32604/cmc.2024.054188 - 12 September 2024

    Abstract Addressing the challenges in detecting surface floating litter in artificial lakes, including complex environments, uneven illumination, and susceptibility to noise and weather, this paper proposes an efficient and lightweight Ghost-YOLO (You Only Look Once) v8 algorithm. The algorithm integrates advanced attention mechanisms and a small-target detection head to significantly enhance detection performance and efficiency. Firstly, an SE (Squeeze-and-Excitation) mechanism is incorporated into the backbone network to fortify the extraction of resilient features and precise target localization. This mechanism models feature channel dependencies, enabling adaptive adjustment of channel importance, thereby improving recognition of floating litter targets.… More >

  • Open Access

    ARTICLE

    A Hybrid Feature Fusion Traffic Sign Detection Algorithm Based on YOLOv7

    Bingyi Ren1,4, Juwei Zhang2,3,4,*, Tong Wang2,4

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1425-1440, 2024, DOI:10.32604/cmc.2024.052667 - 18 July 2024

    Abstract Autonomous driving technology has entered a period of rapid development, and traffic sign detection is one of the important tasks. Existing target detection networks are difficult to adapt to scenarios where target sizes are seriously imbalanced, and traffic sign targets are small and have unclear features, which makes detection more difficult. Therefore, we propose a Hybrid Feature Fusion Traffic Sign detection algorithm based on YOLOv7 (HFFT-YOLO). First, a self-attention mechanism is incorporated at the end of the backbone network to calculate feature interactions within scales; Secondly, the cross-scale fusion part of the neck introduces a… More >

  • Open Access

    ARTICLE

    Target Detection on Water Surfaces Using Fusion of Camera and LiDAR Based Information

    Yongguo Li, Yuanrong Wang, Jia Xie*, Caiyin Xu, Kun Zhang

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 467-486, 2024, DOI:10.32604/cmc.2024.051426 - 18 July 2024

    Abstract To address the challenges of missed detections in water surface target detection using solely visual algorithms in unmanned surface vehicle (USV) perception, this paper proposes a method based on the fusion of visual and LiDAR point-cloud projection for water surface target detection. Firstly, the visual recognition component employs an improved YOLOv7 algorithm based on a self-built dataset for the detection of water surface targets. This algorithm modifies the original YOLOv7 architecture to a Slim-Neck structure, addressing the problem of excessive redundant information during feature extraction in the original YOLOv7 network model. Simultaneously, this modification simplifies… More >

  • Open Access

    ARTICLE

    Highly Differentiated Target Detection under Extremely Low-Light Conditions Based on Improved YOLOX Model

    Haijian Shao1,2,*, Suqin Lei1, Chenxu Yan3, Xing Deng1, Yunsong Qi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1507-1537, 2024, DOI:10.32604/cmes.2024.050140 - 20 May 2024

    Abstract This paper expounds upon a novel target detection methodology distinguished by its elevated discriminatory efficacy, specifically tailored for environments characterized by markedly low luminance levels. Conventional methodologies struggle with the challenges posed by luminosity fluctuations, especially in settings characterized by diminished radiance, further exacerbated by the utilization of suboptimal imaging instrumentation. The envisioned approach mandates a departure from the conventional YOLOX model, which exhibits inadequacies in mitigating these challenges. To enhance the efficacy of this approach in low-light conditions, the dehazing algorithm undergoes refinement, effecting a discerning regulation of the transmission rate at the pixel… More > Graphic Abstract

    Highly Differentiated Target Detection under Extremely Low-Light Conditions Based on Improved YOLOX Model

  • Open Access

    ARTICLE

    An Underwater Target Detection Algorithm Based on Attention Mechanism and Improved YOLOv7

    Liqiu Ren, Zhanying Li*, Xueyu He, Lingyan Kong, Yinghao Zhang

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2829-2845, 2024, DOI:10.32604/cmc.2024.047028 - 27 February 2024

    Abstract For underwater robots in the process of performing target detection tasks, the color distortion and the uneven quality of underwater images lead to great difficulties in the feature extraction process of the model, which is prone to issues like error detection, omission detection, and poor accuracy. Therefore, this paper proposed the CER-YOLOv7(CBAM-EIOU-RepVGG-YOLOv7) underwater target detection algorithm. To improve the algorithm’s capability to retain valid features from both spatial and channel perspectives during the feature extraction phase, we have added a Convolutional Block Attention Module (CBAM) to the backbone network. The Reparameterization Visual Geometry Group (RepVGG)… More >

  • Open Access

    ARTICLE

    Target Detection Algorithm in Foggy Scenes Based on Dual Subnets

    Yuecheng Yu1,*, Liming Cai1, Anqi Ning1, Jinlong Shi1, Xudong Chen2, Shixin Huang1

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1915-1931, 2024, DOI:10.32604/cmc.2024.046125 - 27 February 2024

    Abstract Under the influence of air humidity, dust, aerosols, etc., in real scenes, haze presents an uneven state. In this way, the image quality and contrast will decrease. In this case, It is difficult to detect the target in the image by the universal detection network. Thus, a dual subnet based on multi-task collaborative training (DSMCT) is proposed in this paper. Firstly, in the training phase, the Gated Context Aggregation Network (GCANet) is used as the supervisory network of YOLOX to promote the extraction of clean information in foggy scenes. In the test phase, only the… More >

  • Open Access

    ARTICLE

    Infrared Small Target Detection Algorithm Based on ISTD-CenterNet

    Ning Li*, Shucai Huang, Daozhi Wei

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3511-3531, 2023, DOI:10.32604/cmc.2023.045987 - 26 December 2023

    Abstract This paper proposes a real-time detection method to improve the Infrared small target detection CenterNet (ISTD-CenterNet) network for detecting small infrared targets in complex environments. The method eliminates the need for an anchor frame, addressing the issues of low accuracy and slow speed. HRNet is used as the framework for feature extraction, and an ECBAM attention module is added to each stage branch for intelligent identification of the positions of small targets and significant objects. A scale enhancement module is also added to obtain a high-level semantic representation and fine-resolution prediction map for the entire… More >

  • Open Access

    ARTICLE

    C2Net-YOLOv5: A Bidirectional Res2Net-Based Traffic Sign Detection Algorithm

    Xiujuan Wang1, Yiqi Tian1,*, Kangfeng Zheng2, Chutong Liu3

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1949-1965, 2023, DOI:10.32604/cmc.2023.042224 - 29 November 2023

    Abstract Rapid advancement of intelligent transportation systems (ITS) and autonomous driving (AD) have shown the importance of accurate and efficient detection of traffic signs. However, certain drawbacks, such as balancing accuracy and real-time performance, hinder the deployment of traffic sign detection algorithms in ITS and AD domains. In this study, a novel traffic sign detection algorithm was proposed based on the bidirectional Res2Net architecture to achieve an improved balance between accuracy and speed. An enhanced backbone network module, called C2Net, which uses an upgraded bidirectional Res2Net, was introduced to mitigate information loss in the feature extraction… More >

  • Open Access

    ARTICLE

    Sonar Image Target Detection for Underwater Communication System Based on Deep Neural Network

    Lilan Zou1, Bo Liang1, Xu Cheng2, Shufa Li1,*, Cong Lin1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2641-2659, 2023, DOI:10.32604/cmes.2023.028037 - 03 August 2023

    Abstract Target signal acquisition and detection based on sonar images is a challenging task due to the complex underwater environment. In order to solve the problem that some semantic information in sonar images is lost and model detection performance is degraded due to the complex imaging environment, we proposed a more effective and robust target detection framework based on deep learning, which can make full use of the acoustic shadow information in the forward-looking sonar images to assist underwater target detection. Firstly, the weighted box fusion method is adopted to generate a fusion box by weighted… More > Graphic Abstract

    Sonar Image Target Detection for Underwater Communication System Based on Deep Neural Network

  • Open Access

    ARTICLE

    Faster RCNN Target Detection Algorithm Integrating CBAM and FPN

    Wenshun Sheng*, Xiongfeng Yu, Jiayan Lin, Xin Chen

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1549-1569, 2023, DOI:10.32604/csse.2023.039410 - 28 July 2023

    Abstract Small targets and occluded targets will inevitably appear in the image during the shooting process due to the influence of angle, distance, complex scene, illumination intensity, and other factors. These targets have few effective pixels, few features, and no apparent features, which makes extracting their efficient features difficult and easily leads to false detection, missed detection, and repeated detection, affecting the performance of target detection models. An improved faster region convolutional neural network (RCNN) algorithm (CF-RCNN) integrating convolutional block attention module (CBAM) and feature pyramid networks (FPN) is proposed to improve the detection and recognition… More >

Displaying 1-10 on page 1 of 28. Per Page