Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (50)
  • Open Access

    ARTICLE

    A Bioinspired Method for Optimal Task Scheduling in Fog-Cloud Environment

    Ferzat Anka1, Ghanshyam G. Tejani2,3,*, Sunil Kumar Sharma4, Mohammed Baljon5

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2691-2724, 2025, DOI:10.32604/cmes.2025.061522 - 03 March 2025

    Abstract Due to the intense data flow in expanding Internet of Things (IoT) applications, a heavy processing cost and workload on the fog-cloud side become inevitable. One of the most critical challenges is optimal task scheduling. Since this is an NP-hard problem type, a metaheuristic approach can be a good option. This study introduces a novel enhancement to the Artificial Rabbits Optimization (ARO) algorithm by integrating Chaotic maps and Levy flight strategies (CLARO). This dual approach addresses the limitations of standard ARO in terms of population diversity and convergence speed. It is designed for task scheduling… More >

  • Open Access

    ARTICLE

    An Adaptive Firefly Algorithm for Dependent Task Scheduling in IoT-Fog Computing

    Adil Yousif*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2869-2892, 2025, DOI:10.32604/cmes.2025.059786 - 03 March 2025

    Abstract The Internet of Things (IoT) has emerged as an important future technology. IoT-Fog is a new computing paradigm that processes IoT data on servers close to the source of the data. In IoT-Fog computing, resource allocation and independent task scheduling aim to deliver short response time services demanded by the IoT devices and performed by fog servers. The heterogeneity of the IoT-Fog resources and the huge amount of data that needs to be processed by the IoT-Fog tasks make scheduling fog computing tasks a challenging problem. This study proposes an Adaptive Firefly Algorithm (AFA) for… More >

  • Open Access

    ARTICLE

    Innovative Approaches to Task Scheduling in Cloud Computing Environments Using an Advanced Willow Catkin Optimization Algorithm

    Jeng-Shyang Pan1,2, Na Yu1, Shu-Chuan Chu1,*, An-Ning Zhang1, Bin Yan3, Junzo Watada4

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2495-2520, 2025, DOI:10.32604/cmc.2024.058450 - 17 February 2025

    Abstract The widespread adoption of cloud computing has underscored the critical importance of efficient resource allocation and management, particularly in task scheduling, which involves assigning tasks to computing resources for optimized resource utilization. Several meta-heuristic algorithms have shown effectiveness in task scheduling, among which the relatively recent Willow Catkin Optimization (WCO) algorithm has demonstrated potential, albeit with apparent needs for enhanced global search capability and convergence speed. To address these limitations of WCO in cloud computing task scheduling, this paper introduces an improved version termed the Advanced Willow Catkin Optimization (AWCO) algorithm. AWCO enhances the algorithm’s… More >

  • Open Access

    ARTICLE

    Offload Strategy for Edge Computing in Satellite Networks Based on Software Defined Network

    Zhiguo Liu1,#, Yuqing Gui1,#, Lin Wang2,*, Yingru Jiang1

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 863-879, 2025, DOI:10.32604/cmc.2024.057353 - 03 January 2025

    Abstract Satellite edge computing has garnered significant attention from researchers; however, processing a large volume of tasks within multi-node satellite networks still poses considerable challenges. The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers, making it necessary to implement effective task offloading scheduling to enhance user experience. In this paper, we propose a priority-based task scheduling strategy based on a Software-Defined Network (SDN) framework for satellite-terrestrial integrated networks, which clarifies the execution order of tasks based on their priority. Subsequently, we More >

  • Open Access

    ARTICLE

    Hybrid Task Scheduling Algorithm for Makespan Optimisation in Cloud Computing: A Performance Evaluation

    Abdulrahman M. Abdulghani*

    Journal on Artificial Intelligence, Vol.6, pp. 241-259, 2024, DOI:10.32604/jai.2024.056259 - 16 October 2024

    Abstract Cloud computing has rapidly evolved into a critical technology, seamlessly integrating into various aspects of daily life. As user demand for cloud services continues to surge, the need for efficient virtualization and resource management becomes paramount. At the core of this efficiency lies task scheduling, a complex process that determines how tasks are allocated and executed across cloud resources. While extensive research has been conducted in the area of task scheduling, optimizing multiple objectives simultaneously remains a significant challenge due to the NP (Non-deterministic Polynomial) Complete nature of the problem. This study aims to address… More >

  • Open Access

    ARTICLE

    Fitness Sharing Chaotic Particle Swarm Optimization (FSCPSO): A Metaheuristic Approach for Allocating Dynamic Virtual Machine (VM) in Fog Computing Architecture

    Prasanna Kumar Kannughatta Ranganna1, Siddesh Gaddadevara Matt2, Chin-Ling Chen3,4,*, Ananda Babu Jayachandra5, Yong-Yuan Deng4,*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2557-2578, 2024, DOI:10.32604/cmc.2024.051634 - 15 August 2024

    Abstract In recent decades, fog computing has played a vital role in executing parallel computational tasks, specifically, scientific workflow tasks. In cloud data centers, fog computing takes more time to run workflow applications. Therefore, it is essential to develop effective models for Virtual Machine (VM) allocation and task scheduling in fog computing environments. Effective task scheduling, VM migration, and allocation, altogether optimize the use of computational resources across different fog nodes. This process ensures that the tasks are executed with minimal energy consumption, which reduces the chances of resource bottlenecks. In this manuscript, the proposed framework… More >

  • Open Access

    ARTICLE

    Distributed Graph Database Load Balancing Method Based on Deep Reinforcement Learning

    Shuming Sha1,2, Naiwang Guo3, Wang Luo1,2, Yong Zhang1,2,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5105-5124, 2024, DOI:10.32604/cmc.2024.049584 - 20 June 2024

    Abstract This paper focuses on the scheduling problem of workflow tasks that exhibit interdependencies. Unlike independent batch tasks, workflows typically consist of multiple subtasks with intrinsic correlations and dependencies. It necessitates the distribution of various computational tasks to appropriate computing node resources in accordance with task dependencies to ensure the smooth completion of the entire workflow. Workflow scheduling must consider an array of factors, including task dependencies, availability of computational resources, and the schedulability of tasks. Therefore, this paper delves into the distributed graph database workflow task scheduling problem and proposes a workflow scheduling methodology based… More >

  • Open Access

    ARTICLE

    Enhanced Hybrid Equilibrium Strategy in Fog-Cloud Computing Networks with Optimal Task Scheduling

    Muchang Rao, Hang Qin*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2647-2672, 2024, DOI:10.32604/cmc.2024.050380 - 15 May 2024

    Abstract More devices in the Intelligent Internet of Things (AIoT) result in an increased number of tasks that require low latency and real-time responsiveness, leading to an increased demand for computational resources. Cloud computing’s low-latency performance issues in AIoT scenarios have led researchers to explore fog computing as a complementary extension. However, the effective allocation of resources for task execution within fog environments, characterized by limitations and heterogeneity in computational resources, remains a formidable challenge. To tackle this challenge, in this study, we integrate fog computing and cloud computing. We begin by establishing a fog-cloud environment… More >

  • Open Access

    ARTICLE

    MCWOA Scheduler: Modified Chimp-Whale Optimization Algorithm for Task Scheduling in Cloud Computing

    Chirag Chandrashekar1, Pradeep Krishnadoss1,*, Vijayakumar Kedalu Poornachary1, Balasundaram Ananthakrishnan1,2

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2593-2616, 2024, DOI:10.32604/cmc.2024.046304 - 27 February 2024

    Abstract Cloud computing provides a diverse and adaptable resource pool over the internet, allowing users to tap into various resources as needed. It has been seen as a robust solution to relevant challenges. A significant delay can hamper the performance of IoT-enabled cloud platforms. However, efficient task scheduling can lower the cloud infrastructure’s energy consumption, thus maximizing the service provider’s revenue by decreasing user job processing times. The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm (MCWOA), combines elements of the Chimp Optimization Algorithm (COA) and the Whale Optimization Algorithm (WOA). To enhance MCWOA’s… More >

  • Open Access

    ARTICLE

    Hybrid Hierarchical Particle Swarm Optimization with Evolutionary Artificial Bee Colony Algorithm for Task Scheduling in Cloud Computing

    Shasha Zhao1,2,3,*, Huanwen Yan1,2, Qifeng Lin1,2, Xiangnan Feng1,2, He Chen1,2, Dengyin Zhang1,2

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1135-1156, 2024, DOI:10.32604/cmc.2024.045660 - 30 January 2024

    Abstract Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment. Short execution time and low load imbalance may be the challenges for some algorithms in resource scheduling scenarios. In this work, the Hierarchical Particle Swarm Optimization-Evolutionary Artificial Bee Colony Algorithm (HPSO-EABC) has been proposed, which hybrids our presented Evolutionary Artificial Bee Colony (EABC), and Hierarchical Particle Swarm Optimization (HPSO) algorithm. The HPSO-EABC algorithm incorporates both the advantages of the HPSO and the EABC algorithm. Comprehensive testing including evaluations of algorithm convergence speed,… More >

Displaying 1-10 on page 1 of 50. Per Page