Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    REVIEW

    Comprehensive Review and Analysis on Facial Emotion Recognition: Performance Insights into Deep and Traditional Learning with Current Updates and Challenges

    Amjad Rehman1, Muhammad Mujahid1, Alex Elyassih1, Bayan AlGhofaily1, Saeed Ali Omer Bahaj2,*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 41-72, 2025, DOI:10.32604/cmc.2024.058036 - 03 January 2025

    Abstract In computer vision and artificial intelligence, automatic facial expression-based emotion identification of humans has become a popular research and industry problem. Recent demonstrations and applications in several fields, including computer games, smart homes, expression analysis, gesture recognition, surveillance films, depression therapy, patient monitoring, anxiety, and others, have brought attention to its significant academic and commercial importance. This study emphasizes research that has only employed facial images for face expression recognition (FER), because facial expressions are a basic way that people communicate meaning to each other. The immense achievement of deep learning has resulted in a… More >

  • Open Access

    ARTICLE

    Detection of Copy-Move Forgery in Digital Images Using Singular Value Decomposition

    Zaid Nidhal Khudhair1,4, Farhan Mohamed2, Amjad Rehman3,*, Tanzila Saba3, Saeed Ali bahaj3

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4135-4147, 2023, DOI:10.32604/cmc.2023.032315 - 31 October 2022

    Abstract This paper presents an improved approach for detecting copy-move forgery based on singular value decomposition (SVD). It is a block-based method where the image is scanned from left to right and top to down by a sliding window with a determined size. At each step, the SVD is determined. First, the diagonal matrix’s maximum value (norm) is selected (representing the scaling factor for SVD and a fixed value for each set of matrix elements even when rotating the matrix or scaled). Then, the similar norms are grouped, and each leading group is separated into many More >

Displaying 1-10 on page 1 of 2. Per Page