Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (164)
  • Open Access

    ARTICLE

    Evaluation of Strip-Processed Cotton Stalks as a Raw Material for Structural Panels

    Aadarsha Lamichhane1, Arun Kuttoor Vasudevan1, Ethan Dean1, Mostafa Mohammadabadi1,*, Kevin Ragon1, Ardeshir Adeli2

    Journal of Renewable Materials, Vol.14, No.1, 2026, DOI:10.32604/jrm.2025.02025-0146 - 23 January 2026

    Abstract This study explores a novel method for processing cotton stalks—an abundant agricultural byproduct—into long strips that serve as sustainable raw material for engineered bio-based panels. To evaluate the effect of raw material morphology on panel’s performance, two types of cotton stalk-based panels were developed: one using long strips, maintaining fiber continuity, and the other using ground particles, representing conventional processing. A wood strand-based panel made from commercial southern yellow pine strands served as the control. All panels were bonded using phenol-formaldehyde resin and hot-pressed to a target thickness of 12.7 mm and density of 640 kg/m3.… More >

  • Open Access

    ARTICLE

    A Hybrid Approach to Software Testing Efficiency: Stacked Ensembles and Deep Q-Learning for Test Case Prioritization and Ranking

    Anis Zarrad1, Thomas Armstrong2, Jaber Jemai3,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072768 - 12 January 2026

    Abstract Test case prioritization and ranking play a crucial role in software testing by improving fault detection efficiency and ensuring software reliability. While prioritization selects the most relevant test cases for optimal coverage, ranking further refines their execution order to detect critical faults earlier. This study investigates machine learning techniques to enhance both prioritization and ranking, contributing to more effective and efficient testing processes. We first employ advanced feature engineering alongside ensemble models, including Gradient Boosted, Support Vector Machines, Random Forests, and Naive Bayes classifiers to optimize test case prioritization, achieving an accuracy score of 0.98847More >

  • Open Access

    ARTICLE

    A REST API Fuzz Testing Framework Based on GUI Interaction and Specification Completion

    Zonglin Li1,#, Xu Zhao2,#, Yan Cao2,*, Yazhe Li3, Yihong Zhang1

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071511 - 12 January 2026

    Abstract With the rapid development of Internet technology, REST APIs (Representational State Transfer Application Programming Interfaces) have become the primary communication standard in modern microservice architectures, raising increasing concerns about their security. Existing fuzz testing methods include random or dictionary-based input generation, which often fail to ensure both syntactic and semantic correctness, and OpenAPI-based approaches, which offer better accuracy but typically lack detailed descriptions of endpoints, parameters, or data formats. To address these issues, this paper proposes the APIDocX fuzz testing framework. It introduces a crawler tailored for dynamic web pages that automatically simulates user interactions More >

  • Open Access

    ARTICLE

    A Novel Quantitative Detection of Sleeve Grouting Compactness Based on Ultrasonic Time-Frequency Dual-Domain Analysis

    Longqi Liao1, Jing Li2, Yuhua Li3, Yuemin Wang3, Jinhua Li1,*, Liyuan Cao4,*, Chunxiang Li4,*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.072237 - 08 January 2026

    Abstract Quantitative detection of sleeve grouting compactness is a technical challenge in civil engineering testing. This study explores a novel quantitative detection method based on ultrasonic time-frequency dual-domain analysis. It establishes a mapping relationship between sleeve grouting compactness and characteristic parameters. First, this study made samples with gradient defects for two types of grouting sleeves, G18 and G20. These included four cases: 2D, 4D, 6D defects (where D is the diameter of the grouting sleeve), and no-defect. Then, an ultrasonic input/output data acquisition system was established. Three-dimensional sound field distribution data were obtained through an orthogonal… More >

  • Open Access

    ARTICLE

    Suppression of Dry-Coupled Rubber Layer Interference in Ultrasonic Thickness Measurement: A Comparative Study of Empirical Mode Decomposition Variants

    Weichen Wang1, Shaofeng Wang1, Wenjing Liu1,*, Luncai Zhou2, Erqing Zhang1, Ting Gao3, Grigory Petrishin4

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071278 - 08 January 2026

    Abstract In dry-coupled ultrasonic thickness measurement, thick rubber layers introduce high-amplitude parasitic echoes that obscure defect signals and degrade thickness accuracy. Existing methods struggle to resolve overlap-ping echoes under variable coupling conditions and non-stationary noise. This study proposes a novel dual-criterion framework integrating energy contribution and statistical impulsivity metrics to isolate specimen re-flections from coupling-layer interference. By decomposing A-scan signals into Intrinsic Mode Functions (IMFs), the framework employs energy contribution thresholds (>85%) and kurtosis indices (>3) to autonomously select IMFs containing valid specimen echoes. Hybrid time-frequency thresholding further suppresses interference through amplitude filtering and spectral focusing. More >

  • Open Access

    ARTICLE

    Ultrasonic Defect Localization Correction Method under the Influence of Non-Uniform Temperature Field

    Jianhua Du1, Shaofeng Wang1, Ting Gao2, Huiwen Sun2, Wenjing Liu1,*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071189 - 08 January 2026

    Abstract In ultrasonic non-destructive testing of high-temperature industrial equipment, sound velocity drift induced by non-uniform temperature fields can severely compromise defect localization accuracy. Conventional approaches that rely on room-temperature sound velocities introduce systematic errors, potentially leading to misjudgment of safety-critical components. Two primary challenges hinder current methods: first, it is difficult to monitor real-time changes in sound velocity distribution within a thermal gradient; second, traditional uniform-temperature correction models fail to capture the nonlinear dependence of material properties on temperature and their effect on ultrasonic velocity fields. Here, we propose a defect localization correction method based on… More >

  • Open Access

    ARTICLE

    Beyond Accuracy: Evaluating and Explaining the Capability Boundaries of Large Language Models in Syntax-Preserving Code Translation

    Yaxin Zhao1, Qi Han2, Hui Shu2, Yan Guang2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-24, 2026, DOI:10.32604/cmc.2025.070511 - 09 December 2025

    Abstract Large Language Models (LLMs) are increasingly applied in the field of code translation. However, existing evaluation methodologies suffer from two major limitations: (1) the high overlap between test data and pretraining corpora, which introduces significant bias in performance evaluation; and (2) mainstream metrics focus primarily on surface-level accuracy, failing to uncover the underlying factors that constrain model capabilities. To address these issues, this paper presents TCode (Translation-Oriented Code Evaluation benchmark)—a complexity-controllable, contamination-free benchmark dataset for code translation—alongside a dedicated static feature sensitivity evaluation framework. The dataset is carefully designed to control complexity along multiple dimensions—including syntactic… More >

  • Open Access

    ARTICLE

    Calibrating Trust in Generative Artificial Intelligence: A Human-Centered Testing Framework with Adaptive Explainability

    Sewwandi Tennakoon1, Eric Danso1, Zhenjie Zhao2,*

    Journal on Artificial Intelligence, Vol.7, pp. 517-547, 2025, DOI:10.32604/jai.2025.072628 - 01 December 2025

    Abstract Generative Artificial Intelligence (GenAI) systems have achieved remarkable capabilities across text, code, and image generation; however, their outputs remain prone to errors, hallucinations, and biases. Users often overtrust these outputs due to limited transparency, which can lead to misuse and decision errors. This study addresses the challenge of calibrating trust in GenAI through a human centered testing framework enhanced with adaptive explainability. We introduce a methodology that adjusts explanations dynamically according to user expertise, model output confidence, and contextual risk factors, providing guidance that is informative but not overwhelming. The framework was evaluated using outputs… More >

  • Open Access

    ARTICLE

    Performance Boundaries of Air- and Ground-Coupled GPR for Void Detection in Multilayer Reinforced HSR Tunnel Linings: Simulation and Field Validation

    Yang Lei1,*, Bo Jiang1, Yucai Zhao2, Gaofeng Fu3, Falin Qi1, Tian Tian1, Qiankuan Feng1, Qiming Qu1

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1657-1679, 2025, DOI:10.32604/sdhm.2025.069415 - 17 November 2025

    Abstract Detecting internal defects, particularly voids behind linings, is critical for ensuring the structural integrity of aging high-speed rail (HSR) tunnel networks. While ground-penetrating radar (GPR) is widely employed, systematic quantification of performance boundaries for air-coupled (A-CGPR) and ground-coupled (G-CGPR) systems within the complex electromagnetic environment of multilayer reinforced HSR tunnels remains limited. This study establishes physics-based quantitative performance limits for A-CGPR and G-CGPR through rigorously validated GPRMax finite-difference time-domain (FDTD) simulations and comprehensive field validation over a 300 m operational HSR tunnel section. Key performance metrics were quantified as functions of: (a) detection distance (A-CGPR:… More >

  • Open Access

    ARTICLE

    Psychometric Properties of the Shortened Chinese Version of the Community Attitudes towards the Mentally Ill Scale

    Si-Yu Gao1, Siu-Man Ng2,*

    International Journal of Mental Health Promotion, Vol.27, No.10, pp. 1471-1482, 2025, DOI:10.32604/ijmhp.2025.068702 - 31 October 2025

    Abstract Background: Existing Chinese stigma scales focus on the perceptions of people with mental illness (PMI) without assessing the general public’s attitudes toward integrating PMI into the community. Developing a valid and reliable Chinese instrument measuring the attitude domain will be helpful to future research in this area. The current study aimed to validate a shortened Chinese version of the Community Attitudes towards the Mentally Ill Scale (C-CAMI-SF). Methods: Four hundred participants who are (1) Chinese; (2) aged 18 years and above; and (3) able to complete the Chinese questionnaire in a self-reported manner participated in… More >

Displaying 1-10 on page 1 of 164. Per Page