Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (44)
  • Open Access

    REVIEW

    A Survey on Sensor- and Communication-Based Issues of Autonomous UAVs

    Pavlo Mykytyn1,2,*, Marcin Brzozowski1, Zoya Dyka1,2, Peter Langendoerfer1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1019-1050, 2024, DOI:10.32604/cmes.2023.029075 - 17 November 2023

    Abstract The application field for Unmanned Aerial Vehicle (UAV) technology and its adoption rate have been increasing steadily in the past years. Decreasing cost of commercial drones has enabled their use at a scale broader than ever before. However, increasing the complexity of UAVs and decreasing the cost, both contribute to a lack of implemented security measures and raise new security and safety concerns. For instance, the issue of implausible or tampered UAV sensor measurements is barely addressed in the current research literature and thus, requires more attention from the research community. The goal of this… More >

  • Open Access

    ARTICLE

    DL-Powered Anomaly Identification System for Enhanced IoT Data Security

    Manjur Kolhar*, Sultan Mesfer Aldossary

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 2857-2879, 2023, DOI:10.32604/cmc.2023.042726 - 26 December 2023

    Abstract In many commercial and public sectors, the Internet of Things (IoT) is deeply embedded. Cyber security threats aimed at compromising the security, reliability, or accessibility of data are a serious concern for the IoT. Due to the collection of data from several IoT devices, the IoT presents unique challenges for detecting anomalous behavior. It is the responsibility of an Intrusion Detection System (IDS) to ensure the security of a network by reporting any suspicious activity. By identifying failed and successful attacks, IDS provides a more comprehensive security capability. A reliable and efficient anomaly detection system… More >

  • Open Access

    ARTICLE

    Multiclass Classification for Cyber Threats Detection on Twitter

    Adnan Hussein1, Abdulwahab Ali Almazroi2,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3853-3866, 2023, DOI:10.32604/cmc.2023.040856 - 26 December 2023

    Abstract The advances in technology increase the number of internet systems usage. As a result, cybersecurity issues have become more common. Cyber threats are one of the main problems in the area of cybersecurity. However, detecting cybersecurity threats is not a trivial task and thus is the center of focus for many researchers due to its importance. This study aims to analyze Twitter data to detect cyber threats using a multiclass classification approach. The data is passed through different tasks to prepare it for the analysis. Term Frequency and Inverse Document Frequency (TFIDF) features are extracted… More >

  • Open Access

    REVIEW

    Survey on Deep Learning Approaches for Detection of Email Security Threat

    Mozamel M. Saeed1,*, Zaher Al Aghbari2

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 325-348, 2023, DOI:10.32604/cmc.2023.036894 - 31 October 2023

    Abstract Emailing is among the cheapest and most easily accessible platforms, and covers every idea of the present century like banking, personal login database, academic information, invitation, marketing, advertisement, social engineering, model creation on cyber-based technologies, etc. The uncontrolled development and easy access to the internet are the reasons for the increased insecurity in email communication. Therefore, this review paper aims to investigate deep learning approaches for detecting the threats associated with e-mail security. This study compiles the literature related to the deep learning methodologies, which are applicable for providing safety in the field of cyber… More >

  • Open Access

    REVIEW

    Blockchain Security Threats and Collaborative Defense: A Literature Review

    Xiulai Li1,2,3,4, Jieren Cheng1,3,*, Zhaoxin Shi2,3, Jingxin Liu2,3, Bin Zhang1,3, Xinbing Xu2,3, Xiangyan Tang1,3, Victor S. Sheng5

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2597-2629, 2023, DOI:10.32604/cmc.2023.040596 - 08 October 2023

    Abstract As a distributed database, the system security of the blockchain is of great significance to prevent tampering, protect privacy, prevent double spending, and improve credibility. Due to the decentralized and trustless nature of blockchain, the security defense of the blockchain system has become one of the most important measures. This paper comprehensively reviews the research progress of blockchain security threats and collaborative defense, and we first introduce the overview, classification, and threat assessment process of blockchain security threats. Then, we investigate the research status of single-node defense technology and multi-node collaborative defense technology and summarize More >

  • Open Access

    ARTICLE

    A Novel IoT Architecture, Assessment of Threats and Their Classification with Machine Learning Solutions

    Oliva Debnath1, Saptarshi Debnath1, Sreyashi Karmakar2, MD Tausif Mallick3, Himadri Nath Saha4,*

    Journal on Internet of Things, Vol.5, pp. 13-43, 2023, DOI:10.32604/jiot.2023.039391 - 22 September 2023

    Abstract The Internet of Things (IoT) will significantly impact our social and economic lives in the near future. Many Internet of Things (IoT) applications aim to automate multiple tasks so inactive physical objects can behave independently of others. IoT devices, however, are also vulnerable, mostly because they lack the essential built-in security to thwart attackers. It is essential to perform the necessary adjustments in the structure of the IoT systems in order to create an end-to-end secure IoT environment. As a result, the IoT designs that are now in use do not completely support all of… More >

  • Open Access

    ARTICLE

    Advanced Persistent Threat Detection and Mitigation Using Machine Learning Model

    U. Sakthivelu, C. N. S. Vinoth Kumar*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3691-3707, 2023, DOI:10.32604/iasc.2023.036946 - 15 March 2023

    Abstract The detection of cyber threats has recently been a crucial research domain as the internet and data drive people’s livelihood. Several cyber-attacks lead to the compromise of data security. The proposed system offers complete data protection from Advanced Persistent Threat (APT) attacks with attack detection and defence mechanisms. The modified lateral movement detection algorithm detects the APT attacks, while the defence is achieved by the Dynamic Deception system that makes use of the belief update algorithm. Before termination, every cyber-attack undergoes multiple stages, with the most prominent stage being Lateral Movement (LM). The LM uses… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Swot Analysis in Construction and Demolition Waste Management

    R. Rema*, N. Nalanth

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 1497-1506, 2023, DOI:10.32604/iasc.2023.032540 - 05 January 2023

    Abstract Researchers worldwide have employed a varied array of sources to calculate the successful management of Construction and Demolition (C&DW). Limited research has been undertaken in the domain of Construction and Demolition Waste Management (C&DWM) and consequently leaving a large gap in the availability of effective management techniques. Due to the limited time available for building removal and materials collection, preparing for building materials reuse at the end of life is frequently a challenging task. In this research work Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) is proposed to predict the number of waste materials that are More >

  • Open Access

    ARTICLE

    A Graph Theory Based Self-Learning Honeypot to Detect Persistent Threats

    R. T. Pavendan1,*, K. Sankar1, K. A. Varun Kumar2

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3331-3348, 2023, DOI:10.32604/iasc.2023.028029 - 17 August 2022

    Abstract Attacks on the cyber space is getting exponential in recent times. Illegal penetrations and breaches are real threats to the individuals and organizations. Conventional security systems are good enough to detect the known threats but when it comes to Advanced Persistent Threats (APTs) they fails. These APTs are targeted, more sophisticated and very persistent and incorporates lot of evasive techniques to bypass the existing defenses. Hence, there is a need for an effective defense system that can achieve a complete reliance of security. To address the above-mentioned issues, this paper proposes a novel honeypot system More >

  • Open Access

    ARTICLE

    Automated Machine Learning Enabled Cybersecurity Threat Detection in Internet of Things Environment

    Fadwa Alrowais1, Sami Althahabi2, Saud S. Alotaibi3, Abdullah Mohamed4, Manar Ahmed Hamza5,*, Radwa Marzouk6

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 687-700, 2023, DOI:10.32604/csse.2023.030188 - 16 August 2022

    Abstract Recently, Internet of Things (IoT) devices produces massive quantity of data from distinct sources that get transmitted over public networks. Cybersecurity becomes a challenging issue in the IoT environment where the existence of cyber threats needs to be resolved. The development of automated tools for cyber threat detection and classification using machine learning (ML) and artificial intelligence (AI) tools become essential to accomplish security in the IoT environment. It is needed to minimize security issues related to IoT gadgets effectively. Therefore, this article introduces a new Mayfly optimization (MFO) with regularized extreme learning machine (RELM)… More >

Displaying 21-30 on page 3 of 44. Per Page