Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (143)
  • Open Access

    REVIEW

    A State-of-the-Art Survey of Adversarial Reinforcement Learning for IoT Intrusion Detection

    Qasem Abu Al-Haija1,*, Shahad Al Tamimi2

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073540 - 10 February 2026

    Abstract Adversarial Reinforcement Learning (ARL) models for intelligent devices and Network Intrusion Detection Systems (NIDS) improve system resilience against sophisticated cyber-attacks. As a core component of ARL, Adversarial Training (AT) enables NIDS agents to discover and prevent new attack paths by exposing them to competing examples, thereby increasing detection accuracy, reducing False Positives (FPs), and enhancing network security. To develop robust decision-making capabilities for real-world network disruptions and hostile activity, NIDS agents are trained in adversarial scenarios to monitor the current state and notify management of any abnormal or malicious activity. The accuracy and timeliness of… More >

  • Open Access

    ARTICLE

    Robust Recommendation Adversarial Training Based on Self-Purification Data Sanitization

    Haiyan Long1, Gang Chen2,*, Hai Chen3,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073243 - 10 February 2026

    Abstract The performance of deep recommendation models degrades significantly under data poisoning attacks. While adversarial training methods such as Vulnerability-Aware Training (VAT) enhance robustness by injecting perturbations into embeddings, they remain limited by coarse-grained noise and a static defense strategy, leaving models susceptible to adaptive attacks. This study proposes a novel framework, Self-Purification Data Sanitization (SPD), which integrates vulnerability-aware adversarial training with dynamic label correction. Specifically, SPD first identifies high-risk users through a fragility scoring mechanism, then applies self-purification by replacing suspicious interactions with model-predicted high-confidence labels during training. This closed-loop process continuously sanitizes the training More >

  • Open Access

    ARTICLE

    DyLoRA-TAD: Dynamic Low-Rank Adapter for End-to-End Temporal Action Detection

    Jixin Wu1,2, Mingtao Zhou2,3, Di Wu2,3, Wenqi Ren4, Jiatian Mei2,3, Shu Zhang1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072964 - 12 January 2026

    Abstract End-to-end Temporal Action Detection (TAD) has achieved remarkable progress in recent years, driven by innovations in model architectures and the emergence of Video Foundation Models (VFMs). However, existing TAD methods that perform full fine-tuning of pretrained video models often incur substantial computational costs, which become particularly pronounced when processing long video sequences. Moreover, the need for precise temporal boundary annotations makes data labeling extremely expensive. In low-resource settings where annotated samples are scarce, direct fine-tuning tends to cause overfitting. To address these challenges, we introduce Dynamic Low-Rank Adapter (DyLoRA), a lightweight fine-tuning framework tailored specifically… More >

  • Open Access

    ARTICLE

    Mitigating Attribute Inference in Split Learning via Channel Pruning and Adversarial Training

    Afnan Alhindi*, Saad Al-Ahmadi, Mohamed Maher Ben Ismail

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072625 - 12 January 2026

    Abstract Split Learning (SL) has been promoted as a promising collaborative machine learning technique designed to address data privacy and resource efficiency. Specifically, neural networks are divided into client and server sub-networks in order to mitigate the exposure of sensitive data and reduce the overhead on client devices, thereby making SL particularly suitable for resource-constrained devices. Although SL prevents the direct transmission of raw data, it does not alleviate entirely the risk of privacy breaches. In fact, the data intermediately transmitted to the server sub-model may include patterns or information that could reveal sensitive data. Moreover,… More >

  • Open Access

    ARTICLE

    Research on the Classification of Digital Cultural Texts Based on ASSC-TextRCNN Algorithm

    Zixuan Guo1, Houbin Wang2, Sameer Kumar1,*, Yuanfang Chen3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072064 - 12 January 2026

    Abstract With the rapid development of digital culture, a large number of cultural texts are presented in the form of digital and network. These texts have significant characteristics such as sparsity, real-time and non-standard expression, which bring serious challenges to traditional classification methods. In order to cope with the above problems, this paper proposes a new ASSC (ALBERT, SVD, Self-Attention and Cross-Entropy)-TextRCNN digital cultural text classification model. Based on the framework of TextRCNN, the Albert pre-training language model is introduced to improve the depth and accuracy of semantic embedding. Combined with the dual attention mechanism, the… More >

  • Open Access

    ARTICLE

    Deep Retraining Approach for Category-Specific 3D Reconstruction Models from a Single 2D Image

    Nour El Houda Kaiber1, Tahar Mekhaznia1, Akram Bennour1,*, Mohammed Al-Sarem2,3,*, Zakaria Lakhdara4, Fahad Ghaban2, Mohammad Nassef5,6

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070337 - 12 January 2026

    Abstract The generation of high-quality 3D models from single 2D images remains challenging in terms of accuracy and completeness. Deep learning has emerged as a promising solution, offering new avenues for improvements. However, building models from scratch is computationally expensive and requires large datasets. This paper presents a transfer-learning-based approach for category-specific 3D reconstruction from a single 2D image. The core idea is to fine-tune a pre-trained model on specific object categories using new, unseen data, resulting in specialized versions of the model that are better adapted to reconstruct particular objects. The proposed approach utilizes a… More >

  • Open Access

    PROCEEDINGS

    Enhancing Functional Stability of NiTi Tube for Elastocaloric Cooling Through Overstress Training

    Qiuhong Wang1, Hao Yin1,*, Qingping Sun1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.012656

    Abstract Tubular NiTi is a promising candidate of eco-friendly solid-state refrigerant for elastocaloric cooling, but the severe functional degradation of NiTi material during cyclic phase transition (PT) is a key concern in the technology development. Here, plastic deformation of 6.7% is applied on the NiTi tube by overstress training under 1900 MPa for five cycles to improve the cyclic PT stability without losing cooling efficiency. It is found that after 106 compressive cycles under an applied stress of 1000 MPa, the overstress-trained NiTi tube exhibits small residual strain (0.5%), stable adiabatic temperatures drop (T=11K) and improved… More >

  • Open Access

    ARTICLE

    A Keyword-Guided Training Approach to Large Language Models for Judicial Document Generation

    Yi-Ting Peng1,*, Chin-Laung Lei2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3969-3992, 2025, DOI:10.32604/cmes.2025.073258 - 23 December 2025

    Abstract The rapid advancement of Large Language Models (LLMs) has enabled their application in diverse professional domains, including law. However, research on automatic judicial document generation remains limited, particularly for Taiwanese courts. This study proposes a keyword-guided training framework that enhances LLMs’ ability to generate structured and semantically coherent judicial decisions in Chinese. The proposed method first employs LLMs to extract representative legal keywords from absolute court judgments. Then it integrates these keywords into Supervised Fine-Tuning (SFT) and Reinforcement Learning with Human Feedback using Proximal Policy Optimization (RLHF-PPO). Experimental evaluations using models such as Chinese Alpaca More >

  • Open Access

    ARTICLE

    AutoSHARC: Feedback Driven Explainable Intrusion Detection with SHAP-Guided Post-Hoc Retraining for QoS Sensitive IoT Networks

    Muhammad Saad Farooqui1, Aizaz Ahmad Khattak2, Bakri Hossain Awaji3, Nazik Alturki4, Noha Alnazzawi5, Muhammad Hanif6,*, Muhammad Shahbaz Khan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4395-4439, 2025, DOI:10.32604/cmes.2025.072023 - 23 December 2025

    Abstract Quality of Service (QoS) assurance in programmable IoT and 5G networks is increasingly threatened by cyberattacks such as Distributed Denial of Service (DDoS), spoofing, and botnet intrusions. This paper presents AutoSHARC, a feedback-driven, explainable intrusion detection framework that integrates Boruta and LightGBM–SHAP feature selection with a lightweight CNN–Attention–GRU classifier. AutoSHARC employs a two-stage feature selection pipeline to identify the most informative features from high-dimensional IoT traffic and reduces 46 features to 30 highly informative ones, followed by post-hoc SHAP-guided retraining to refine feature importance, forming a feedback loop where only the most impactful attributes are More >

  • Open Access

    ARTICLE

    HI-XDR: Hybrid Intelligent Framework for Adversarial-Resilient Anomaly Detection and Adaptive Cyber Response

    Abd Rahman Wahid*

    Journal of Cyber Security, Vol.7, pp. 589-614, 2025, DOI:10.32604/jcs.2025.071622 - 11 December 2025

    Abstract The rapid increase in cyber attacks requires accurate, adaptive, and interpretable detection and response mechanisms. Conventional security solutions remain fragmented, leaving gaps that attackers can exploit. This study introduces the HI-XDR (Hybrid Intelligent Extended Detection and Response) framework, which combines network-based Suricata rules and endpoint-based Wazuh rules into a unified dataset containing 45,705 entries encoded into 1058 features. A semantic-aware autoencoder-based anomaly detection module is trained and strengthened through adversarial learning using Projected Gradient Descent, achieving a minimum mean squared error of 0.0015 and detecting 458 anomaly rules at the 99th percentile threshold. A comparative… More >

Displaying 1-10 on page 1 of 143. Per Page